crisesStorylinesRAG / app_pyvis_new.py
roncmic's picture
Upload app_pyvis_new.py
a971e90 verified
raw
history blame
29.9 kB
import os
import pandas as pd
from datetime import date
import gradio as gr
from pyvis.network import Network
import ast
from openai import OpenAI
import json
import string
from datetime import datetime
import random
import geopandas as gpd
import folium
from shapely.geometry import mapping
import dropbox
from dropbox.exceptions import ApiError
import io
import pandas as pd
import random
from itertools import combinations
from typing import Optional, Union
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
import inflect
import random
from itertools import combinations
from typing import Optional, Union
import torch
# Replace these with your actual app key and secret
APP_KEY = os.environ['APP_KEY']
APP_SECRET = os.environ['APP_SECRET']
REFRESH_TOKEN = os.environ['REFRESH_TOKEN']
EMM_RETRIEVERS_OPENAI_API_BASE_URL="https://api-gpt.jrc.ec.europa.eu/v1"
EMM_RETRIEVERS_OPENAI_API_KEY = os.environ['EMM_RETRIEVERS_OPENAI_API_KEY']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
usr_tkn_consose_read = os.environ['usr_tkn_consose_read']
inflect_engine = inflect.engine()
model_id = os.environ['ie_model_id']
tokenizer = T5Tokenizer.from_pretrained(model_id)
model = T5ForConditionalGeneration.from_pretrained(model_id)
client1 = OpenAI(
api_key=EMM_RETRIEVERS_OPENAI_API_KEY,
base_url="https://api-gpt.jrc.ec.europa.eu/v1",
)
def geocode_emdat(location):
def process_geocoding(location_to_geocode):
try:
return osm.geocode_to_gdf(location_to_geocode)["geometry"].iloc[0]
except Exception:
return None
geocoded_location = process_geocoding(location)
if geocoded_location is None:
print(f"Error geocoding location '{location}'. Trying to correct with GPT-4.")
response = client1.chat.completions.create(
model="gpt-4o",
stream=False,
messages=[{"role": "user", "content": f"Correct spelling or grammar or substitute with most commonly used location name by Google Maps, give me only the answer in the form 'Country, Location' filled with the corrected Country and Location: '{location}'"}]
)
corrected_location = response.choices[0].message.content.strip()
geocoded_location = process_geocoding(corrected_location)
return geocoded_location
def get_country_boundary(country_name):
# Filter the world GeoDataFrame for the country
country = world[world['NAME'] == country_name]
if not country.empty:
# Return the country's geometry
return country.geometry.iloc[0]
else:
# Return None if country not found
return None
def get_geometries(row):
country = row['Country']
locations = row['Locations']
# Return NaN if locations is NaN
if pd.isna(locations):
return None
# Get the country's boundary
country_boundary = get_country_boundary(country)
# If no country boundary is found, return None
if country_boundary is None:
return None
locations_list = locations.split(', ')
# Get polygons for each location, ignoring None results
polygons = [geocode_emdat(f"{country}, {location}") for location in locations_list]
polygons = [polygon for polygon in polygons if polygon is not None]
# Filter polygons to remove those outside the country boundary
valid_polygons = [polygon for polygon in polygons if polygon.within(country_boundary)]
# If there are no valid polygons, return None
if not valid_polygons:
return None
# Combine them into a single geometry using unary_union
combined_geometry = unary_union(valid_polygons)
return combined_geometry
def singularize(text):
"""Convert a word to its singular form."""
if inflect_engine.singular_noun(text):
return inflect_engine.singular_noun(text)
return text
def is_singular_plural_pair(word1, word2):
"""Check if two words are singular/plural forms of each other."""
return singularize(word1) == singularize(word2)
def extract_edge_and_clean(row, relations):
for relation in relations:
if relation in row['source']:
row['source'] = row['source'].replace(relation, '').strip()
row['edge'] = relation
elif relation in row['target']:
row['target'] = row['target'].replace(relation, '').strip()
row['edge'] = relation
return row
def generate_with_temperature(prompt, temperature=1.0, top_k=50, top_p=0.95, max_length=50):
inputs = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(
input_ids=inputs.input_ids,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p
)
decoded_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return decoded_texts
def generate_new_relations(
graph_df: pd.DataFrame,
new_node: str,
max_combinations_fraction: float = 0.3,
num_beams: int = 6, # Note: Beams are ignored in sampling
max_length: int = 50,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 0.95,
seed: Optional[int] = None,
verbose: bool = False
) -> pd.DataFrame:
if seed is not None:
random.seed(seed)
records = graph_df.to_dict('records')
all_combos = list(combinations(records, 3))
max_iters = max(1, int(max_combinations_fraction * len(all_combos)))
num_iters = random.randint(1, max_iters)
if verbose:
print(f"Total possible combinations: {len(all_combos)}")
print(f"Sampling {num_iters} combos")
all_predictions = []
for _ in range(num_iters):
combo = random.choice(all_combos)
for choice in ('source', 'target'):
last = combo[-1].copy()
if choice == 'target':
prompt_template = f"<extra_id_0> {new_node}."
else:
prompt_template = f"{new_node} <extra_id_0>."
for _ in range(2):
perm = list(combo[:-1])
random.shuffle(perm)
parts = ["If"]
for row in perm:
parts.append(f"{row['source']} {row['edge']} {row['target']},")
parts.append("and")
parts.append(f"{last['source']} {last['edge']} {last['target']},")
parts.append("then")
parts.append(prompt_template)
prompt = " ".join(parts)
if verbose:
print("Generated Prompt:", prompt)
preds = generate_with_temperature(
prompt, temperature, top_k, top_p, max_length
)
if verbose:
print("Predictions:", preds)
for text in preds:
#print("Generated Prompt:", prompt)
#print("text = ", text)
#print("last = ", last)
all_predictions.append((choice, text, last))
if not all_predictions:
return graph_df.copy()
grouped = {}
for choice, text, last in all_predictions:
key = (choice, last['source'], last['edge'], last['target'])
grouped.setdefault(key, []).append(text)
new_edges = []
for (choice, src, edge, tgt), texts in grouped.items():
common = set(texts)
if not common:
continue
for pred in common:
if choice == 'target':
new_edges.append({'source': pred, 'edge': None, 'target': new_node})
else:
new_edges.append({'source': new_node, 'edge': None, 'target': pred})
new_df = pd.DataFrame(new_edges).drop_duplicates()
relations = ['causes', 'prevents']
new_df = new_df.apply(lambda row: extract_edge_and_clean(row, relations), axis=1)
result = pd.concat([graph_df, new_df], ignore_index=True)
result['pair'] = result.apply(lambda x: tuple(sorted([x['source'], x['target']])), axis=1)
result = result.drop_duplicates(subset=['pair'])
result = result[result['source'] != result['target']]
result = result.drop(columns=['pair'])
# Remove duplicates based on plural/singular forms
result['source_singular'] = result['source'].apply(singularize)
result['target_singular'] = result['target'].apply(singularize)
result = result.drop_duplicates(subset=['source_singular', 'edge', 'target_singular'])
result = result[result['source'] != result['target']]
result = result.drop(columns=['source_singular', 'target_singular'])
return result
# Function to get a Dropbox client, refreshing the token if needed
def get_dropbox_client():
try:
# Create a Dropbox client using the refresh token
dbx = dropbox.Dropbox(
oauth2_refresh_token=REFRESH_TOKEN,
app_key=APP_KEY,
app_secret=APP_SECRET
)
return dbx
except Exception as e:
print(f"Error creating Dropbox client: {e}")
return None
client1 = OpenAI(
api_key=EMM_RETRIEVERS_OPENAI_API_KEY,
base_url="https://api-gpt.jrc.ec.europa.eu/v1",
)
df = pd.read_csv("https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ETOHA/storylines/emdat2.csv", sep=',', header=0, dtype=str, encoding='utf-8')
world = gpd.read_file('https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ETOHA/storylines/ne_110m_admin_0_countries.shp')
# Function to get fallback coordinates from GeoPandas
def get_country_centroid(country_name):
# Filter the world GeoDataFrame for the country
country = world[world['NAME'] == country_name]
if not country.empty:
# Get the centroid of the country's geometry
centroid = country.geometry.centroid.iloc[0]
return (centroid.y, centroid.x)
else:
# Default to (0, 0) if country not found
return (0, 0)
# Function to plot a geometry using Folium
def plot_geometry_folium(geometry, location_name='Location', country_name=None):
if geometry is not None:
# Get the centroid for initial map location
centroid = geometry.centroid
initial_coords = (centroid.y, centroid.x)
else:
# Use geopandas to get fallback coordinates
initial_coords = get_country_centroid(country_name)
# Create the map centered at initial_coords
m = folium.Map(location=initial_coords, zoom_start=6)
if geometry is not None:
# Convert to GeoJSON for Folium if geometry exists
geo_json = mapping(geometry)
# Add GeoJSON to the map
folium.GeoJson(geo_json, name=location_name).add_to(m)
else:
# Add a marker to indicate the country location
folium.Marker(initial_coords, popup=location_name).add_to(m)
# Return the HTML representation of the map object
return m._repr_html_()
def gpt_story(storyline):
prompt = (
"Use the information provided to create a short, clear, and useful narrative about a disaster event. "
"The goal is to help decision-makers (e.g. policy makers, disaster managers, civil protection) understand what happened, why, and what it caused. "
"Keep it short and focused.\n\n"
"Include all key information, but keep the text concise and easy to read. Avoid technical jargon.\n\n"
"Steps to Follow:\n"
"1. Start with what happened: Briefly describe the disaster event (what, where, when, who was affected).\n"
"2. Explain why it happened: Use the evidence provided to describe possible causes or triggers (e.g. heavy rainfall, poor infrastructure, heatwave).\n"
"3. Show the impacts: Highlight key impacts such as fatalities, displacement, health effects, or damage.\n"
"4. Connect the dots: Show how different factors are linked. Use simple cause-effect language (e.g. drought led to crop failure, which caused food insecurity).\n"
"5. Mention complexity if needed: If there were multiple contributing factors or reinforcing effects (e.g. climate + conflict), briefly explain them.\n"
"6. Keep it useful: Write with a decision-maker in mind. Focus on what matters: drivers, impacts, and lessons for preparedness or response.\n\n"
f"Information: {storyline}"
)
completion = client1.chat.completions.create(
model='gpt-4o',
messages=[
{"role": "system", "content": "You are a disaster manager expert in risk dynamics."},
{"role": "user", "content": prompt}
]
)
# Extract the content from the response
message_content = completion.choices[0].message.content
return message_content
# DataFrame to store evaluation data
evaluation_df = pd.DataFrame(columns=["DisNo.", "TPN", "TPL", "FPN", "FPL", "FNN", "FNL", "User ID"])
def try_parse_date(y, m, d):
try:
if not y or not m or not d:
return None
return date(int(float(y)), int(float(m)), int(float(d)))
except (ValueError, TypeError):
return None
def plot_cgraph_pyvis(grp):
if not grp:
return "<div>No data available to plot.</div>"
net = Network(notebook=False, directed=True)
edge_colors_dict = {"causes": "red", "prevents": "green"}
for src, rel, tgt in grp:
src = str(src)
tgt = str(tgt)
rel = str(rel)
net.add_node(src, shape="circle", label=src)
net.add_node(tgt, shape="circle", label=tgt)
edge_color = edge_colors_dict.get(rel, 'black')
net.add_edge(src, tgt, title=rel, label=rel, color=edge_color)
net.repulsion(
node_distance=200,
central_gravity=0.2,
spring_length=200,
spring_strength=0.05,
damping=0.09
)
net.set_edge_smooth('dynamic')
html = net.generate_html()
html = html.replace("'", "\"")
# Adjust the iframe style to center the graph and fit the container
html_s = f"""
<div style="display: flex; justify-content: center; align-items: center;">
<iframe style="width: 90%; height: 800px; margin: 0 auto;" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>
</div>
"""
return html_s
def generate_unique_user_id():
# Generate a timestamp string
timestamp_str = datetime.now().strftime("%Y%m%d%H%M%S")
# Generate a random string of 5 letters
random_str = ''.join(random.choices(string.ascii_letters, k=5))
# Combine both to form a unique User ID
return f"{timestamp_str}_{random_str}"
def load_initial_data():
dbx = dropbox.Dropbox(ACCESS_TOKEN)
try:
# Try to download the existing CSV file from Dropbox
metadata, res = dbx.files_download(DROPBOX_FILE_PATH)
csv_content = res.content.decode('utf-8')
# Read the CSV content into a DataFrame
df = pd.read_csv(io.StringIO(csv_content))
print("Loaded existing data from Dropbox.")
except ApiError as e:
# If file not found, initialize an empty DataFrame
if e.error.is_path() and e.error.get_path().is_not_found():
df = pd.DataFrame(columns=["DisNo.", "User Feedback", "User ID"])
print("No existing file found on Dropbox. Initialized an empty DataFrame.")
else:
print(f"Error downloading file: {e}")
df = pd.DataFrame(columns=["DisNo.", "User Feedback", "User ID"])
return df
def append_to_csv_on_dropbox(new_content, dropbox_path):
dbx = get_dropbox_client()
if not dbx:
print("Failed to create Dropbox client.")
return
try:
# Try to download existing file content
metadata, res = dbx.files_download(dropbox_path)
existing_content = res.content.decode('utf-8')
except ApiError as e:
# If file not found, start with empty content
if e.error.is_path() and e.error.get_path().is_not_found():
existing_content = ''
else:
print(f"Error downloading file: {e}")
return
# Append new content without header if file already exists
if existing_content:
new_content_lines = new_content.splitlines()
new_content_without_header = '\n'.join(new_content_lines[1:])
combined_content = existing_content.rstrip('\n') + '\n' + new_content_without_header
else:
combined_content = new_content
try:
# Upload combined content back to Dropbox (overwrite)
dbx.files_upload(combined_content.encode('utf-8'), dropbox_path, mode=dropbox.files.WriteMode.overwrite)
print(f"Appended and uploaded to {dropbox_path} successfully!")
except Exception as e:
print(f"Error uploading file: {e}")
#def append_to_csv_on_dropbox(new_content, dropbox_path):
# dbx = dropbox.Dropbox(ACCESS_TOKEN)
# try:
# Try to download existing file content
# metadata, res = dbx.files_download(dropbox_path)
# existing_content = res.content.decode('utf-8')
# except ApiError as e:
# If file not found, start with empty content
# if e.error.is_path() and e.error.get_path().is_not_found():
# existing_content = ''
# else:
# print(f"Error downloading file: {e}")
# return
# Append new content without header if file already exists
# if existing_content:
# new_content_lines = new_content.splitlines()
# new_content_without_header = '\n'.join(new_content_lines[1:])
# combined_content = existing_content.rstrip('\n') + '\n' + new_content_without_header
# else:
# combined_content = new_content
# try:
# Upload combined content back to Dropbox (overwrite)
# dbx.files_upload(combined_content.encode('utf-8'), dropbox_path, mode=dropbox.files.WriteMode.overwrite)
# print(f"Appended and uploaded to {dropbox_path} successfully!")
# except Exception as e:
# print(f"Error uploading file: {e}")
def save_data_to_dropbox():
# Convert DataFrame to CSV string
csv_content = evaluation_df.to_csv(index=False)
# Append the CSV content to the file on Dropbox
append_to_csv_on_dropbox(csv_content, DROPBOX_FILE_PATH)
def save_data(dis_no, user_feedback):
global evaluation_df
if not dis_no or dis_no == "Select a Disaster Event":
print("Invalid input. Ensure a disaster event is selected.")
return
user_id = generate_unique_user_id()
new_data = pd.DataFrame([[dis_no, user_feedback, user_id]],
columns=["DisNo.", "User Feedback", "User ID"])
evaluation_df = pd.concat([evaluation_df, new_data], ignore_index=True)
print("Updated DataFrame:")
print(evaluation_df)
save_data_to_dropbox()
print(f"Data saved: DisNo: {dis_no}, Feedback: {user_feedback}, User ID: {user_id}")
DROPBOX_FILE_PATH = '/evaluation_data.csv'
evaluation_df = load_initial_data()
def update_row_dropdown(disaster_type=None, country=None):
# Start with the entire dataframe
filtered_df = df
# Step 1: Filter by Disaster Type
if disaster_type:
filtered_df = filtered_df[filtered_df['Disaster Type'] == disaster_type]
# Step 2: Further filter by Country
if country:
filtered_df = filtered_df[filtered_df['Country'] == country]
# Step 3: Generate and sort the DisNo. choices based on the filtered DataFrame
choices = sorted(filtered_df['DisNo.'].tolist()) if not filtered_df.empty else []
# Add a placeholder option at the beginning
choices = ["Select a Disaster Event"] + choices
print(f"Available DisNo. for {disaster_type} in {country}: {choices}")
# Return the update for the dropdown, defaulting to the placeholder
return gr.update(choices=choices, value=choices[0] if choices else None)
def display_info(selected_row_str, country):
if not selected_row_str or selected_row_str == 'Select a Disaster Event':
print("No valid disaster event selected.")
return ('No valid event selected.', '<div>No graph available.</div>', '', '', '')
print(f"Selected Country: {country}, Selected Row: {selected_row_str}")
# Filter the dataframe for the selected disaster number
row_data = df[df['DisNo.'] == selected_row_str]
if not row_data.empty:
#print(f"Row data: {row_data}")
row_data["geometry"] = row_data.apply(get_geometries, axis=1)
row_data = row_data.squeeze()
# Combine the relevant columns into a single storyline with labels
storyline_parts = [
f"Key Information: {row_data.get('key information', '')}",
f"Severity: {row_data.get('severity', '')}",
f"Key Drivers: {row_data.get('key drivers', '')}",
f"Main Impacts, Exposure, and Vulnerability: {row_data.get('main impacts, exposure, and vulnerability', '')}",
f"Likelihood of Multi-Hazard Risks: {row_data.get('likelihood of multi-hazard risks', '')}",
f"Best Practices for Managing This Risk: {row_data.get('best practices for managing this risk', '')}",
f"Recommendations and Supportive Measures for Recovery: {row_data.get('recommendations and supportive measures for recovery', '')}"
]
storyline = "\n\n".join(part for part in storyline_parts if part.split(': ')[1]) # Include only non-empty parts
cleaned_storyline = gpt_story(storyline)
causal_graph_caption = row_data.get('llama graph', '')
grp = ast.literal_eval(causal_graph_caption) if causal_graph_caption else []
causal_graph_html = plot_cgraph_pyvis(grp)
# Create the Folium map
geometry = row_data.get('geometry', None)
folium_map_html = plot_geometry_folium(geometry, location_name=country, country_name=country)
# Parse and format the start date
start_date_str = f"{row_data['Start Year']}-{row_data['Start Month']}-{row_data['Start Day']}"
# Parse and format the end date
end_date_str = f"{row_data['End Year']}-{row_data['End Month']}-{row_data['End Day']}"
return (
cleaned_storyline,
causal_graph_html,
folium_map_html,
start_date_str,
end_date_str
)
else:
print("No valid data found for the selection.")
return ('No valid data found.', '<div>No graph available.</div>', '', '', '')
def process_new_node(selected_row_str, new_node):
if not selected_row_str or selected_row_str == 'Select a Disaster Event':
print("No valid disaster event selected.")
return '<div>No graph available.</div>'
if not new_node:
print("No new node provided.")
return '<div>No graph available.</div>'
print(f"Selected Row: {selected_row_str}, New Node: {new_node}")
# Filter the dataframe for the selected disaster number
row_data = df[df['DisNo.'] == selected_row_str]
if not row_data.empty:
row_data = row_data.squeeze()
causal_graph_caption = row_data.get('llama graph', '')
grp = ast.literal_eval(causal_graph_caption) if causal_graph_caption else []
source, relations, target = list(zip(*grp))
kg_df = pd.DataFrame({'source': source, 'target': target, 'edge': relations})
# Call the generate_new_relations function
result_df = generate_new_relations(
graph_df=kg_df,
new_node=new_node,
max_combinations_fraction=0.1,
temperature=0.8, # Adjust temperature for diversity
top_k=50, # Top-k sampling
top_p=0.95, # Top-p (nucleus) sampling
seed=42, # Optional for reproducibility
verbose=False # Optional for debugging
)
# Plot the updated graph with the new relations
source = result_df['source'].astype(str)
relations = result_df['edge'].astype(str)
target = result_df['target'].astype(str)
grp = zip(source, relations, target)
causal_graph_html = plot_cgraph_pyvis(grp)
return causal_graph_html
else:
print("No valid data found for the selection.")
return '<div>No graph available.</div>'
def build_interface():
with gr.Blocks() as interface:
gr.Markdown(
"""
# From Complexity to Clarity: Leveraging AI to Decode Interconnected Risks
Welcome to our Gradio application, developed and maintained by [JRC](https://joint-research-centre.ec.europa.eu/) Units: **E1**, **F7**, and **T5**. This is part of the **EMBRACE Portfolio on Risks**. <br><br>
**Overview**:
This application employs advanced AI techniques like Retrieval-Augmented Generation (RAG) on [EMM](https://emm.newsbrief.eu/) news. It extracts relevant media content on disaster events recorded in [EM-DAT](https://www.emdat.be/), including floods, wildfires, droughts, epidemics, and disease outbreaks. <br><br>
**How It Works**:
For each selected event (filterable by Disaster Type, Country, and Disaster Number), the app:
- Retrieves pertinent news chunks via the EMM RAG service.
- Uses multiple LLMs from the [GPT@JRC](https://gpt.jrc.ec.europa.eu/) portfolio to:
- Extract critical impact data (e.g., fatalities, affected populations).
- Transform unstructured news into coherent, structured storylines.
- Build causal knowledge graphs — *impact chains* — highlighting drivers, impacts, and interactions. <br><br>
**Explore Events**:
Use the selectors below to explore events by **Disaster Type**, **Country**, and **Disaster Number (DisNo)**. <br>
Once an event is selected, the app will display the **causal impact-chain graph**, illustrating key factors and their interrelationships. <br>
Below the graph, you'll find the **AI-generated narrative**, presenting a structured storyline of the event based on relevant news coverage. <br><br>
**Outcome**:
These outputs offer a deeper understanding of disaster dynamics, supporting practitioners, disaster managers, and policy-makers in identifying patterns, assessing risks, and enhancing preparedness and response strategies.
"""
)
# Create dropdowns for Disaster Type, Country, and Disaster Event #
disaster_type_dropdown = gr.Dropdown(
choices=[''] + df['Disaster Type'].unique().tolist(),
label="Select Disaster Type"
)
country_dropdown = gr.Dropdown(
choices=[''], # Initially empty; will be populated based on disaster type
label="Select Country"
)
row_dropdown = gr.Dropdown(
choices=[],
label="Select Disaster Event #",
interactive=True
)
with gr.Column():
disaster_type_dropdown
country_dropdown
row_dropdown
gr.Markdown("### AI-Generated Storyline:") # Title
outputs = [
gr.Textbox(label="Storyline", interactive=False, lines=10),
gr.HTML(label="Original Causal Graph"), # Change from gr.Plot to gr.HTML
gr.HTML(label="Location Map"), # Add HTML output for Folium map
gr.HTML(label="Updated Causal Graph") # New HTML component for the updated graph
]
# New Radio button for user feedback
feedback_radio = gr.Radio(
choices=["Yes", "No"],
label="According to your expert knowledge, does the graph capture the main relations?",
interactive=True
)
# New section for generating new scenarios
gr.Markdown("### Generate New Scenarios") # Subtitle for the new section
new_node_input = gr.Textbox(
label="Enter a new variable or factor that might interact with the current graph to generate a plausible scenario:",
placeholder="e.g., tornado",
interactive=True
)
# Button to save the data
save_button = gr.Button("Save Data")
# Button to process new node
process_button = gr.Button("Add New Node")
# Update country choices based on selected disaster type
disaster_type_dropdown.change(
fn=lambda disaster_type: gr.update(
choices=[''] + sorted(df[df['Disaster Type'] == disaster_type]['Country'].unique().tolist()),
value=''
),
inputs=disaster_type_dropdown,
outputs=country_dropdown
)
# Update DisNo. choices based on selected disaster type and country
country_dropdown.change(
fn=update_row_dropdown,
inputs=[disaster_type_dropdown, country_dropdown],
outputs=row_dropdown
)
# Display information based on selected DisNo.
row_dropdown.change(
fn=display_info,
inputs=[row_dropdown, country_dropdown],
outputs=outputs[:3] # Do not overwrite the updated graph slot
)
# Handle saving data on button click
save_button.click(
fn=save_data,
inputs=[row_dropdown, feedback_radio],
outputs=[]
)
# Handle processing of the new node
process_button.click(
fn=process_new_node,
inputs=[row_dropdown, new_node_input],
outputs=[outputs[3]] # Update only the updated graph output
)
return interface
app = build_interface()
app.launch()