jsebdev commited on
Commit
81e5f30
·
1 Parent(s): 6f4f703

save whole model

Browse files
Files changed (1) hide show
  1. stock_predictor.ipynb +197 -221
stock_predictor.ipynb CHANGED
@@ -4,7 +4,7 @@
4
  "metadata": {
5
  "colab": {
6
  "provenance": [],
7
- "authorship_tag": "ABX9TyOc5/oQ0Z2ie5dOI46PpyV0",
8
  "include_colab_link": true
9
  },
10
  "kernelspec": {
@@ -33,7 +33,7 @@
33
  "source": [
34
  "from google.colab import drive\n",
35
  "drive.mount('/content/drive')\n",
36
- "project_path = '/content/drive/MyDrive/projects/Stock_Predicter'\n",
37
  "%cd $project_path"
38
  ],
39
  "metadata": {
@@ -41,23 +41,23 @@
41
  "base_uri": "https://localhost:8080/"
42
  },
43
  "id": "Xr3Qozgfktoc",
44
- "outputId": "b4ce9a19-4dc1-43e9-b09e-af91a2b07343"
45
  },
46
- "execution_count": 90,
47
  "outputs": [
48
  {
49
  "output_type": "stream",
50
  "name": "stdout",
51
  "text": [
52
- "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n",
53
- "/content/drive/MyDrive/projects/Stock_Predicter\n"
54
  ]
55
  }
56
  ]
57
  },
58
  {
59
  "cell_type": "code",
60
- "execution_count": 91,
61
  "metadata": {
62
  "id": "e8SQqogMQYLh"
63
  },
@@ -99,7 +99,7 @@
99
  "metadata": {
100
  "id": "O6dtJpJwS5Eg"
101
  },
102
- "execution_count": 92,
103
  "outputs": []
104
  },
105
  {
@@ -113,9 +113,9 @@
113
  "base_uri": "https://localhost:8080/"
114
  },
115
  "id": "LwPyk8Uh-Zz_",
116
- "outputId": "2217df50-87e9-48e3-e096-71163331f570"
117
  },
118
- "execution_count": 93,
119
  "outputs": [
120
  {
121
  "output_type": "stream",
@@ -150,7 +150,7 @@
150
  "metadata": {
151
  "id": "Bpym8x-Kxf0p"
152
  },
153
- "execution_count": 94,
154
  "outputs": []
155
  },
156
  {
@@ -192,7 +192,7 @@
192
  "metadata": {
193
  "id": "v9RoqzBvtrOb"
194
  },
195
- "execution_count": 95,
196
  "outputs": []
197
  },
198
  {
@@ -203,10 +203,12 @@
203
  " \n",
204
  " x_train_list = []\n",
205
  " y_train_list = []\n",
 
 
206
  " \n",
207
  " for i in range(prediction_days, len(norm_data)):\n",
208
- " x_train_list.append(norm_data[i-prediction_days:i])\n",
209
- " y_train_list.append(norm_data.iloc[i].values[0:4])\n",
210
  " \n",
211
  " x_train = np.array(x_train_list)\n",
212
  " y_train = np.array(y_train_list)\n",
@@ -215,9 +217,40 @@
215
  "metadata": {
216
  "id": "jMXkRAYFomHM"
217
  },
218
- "execution_count": 96,
219
  "outputs": []
220
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
  {
222
  "cell_type": "code",
223
  "source": [
@@ -236,7 +269,7 @@
236
  "metadata": {
237
  "id": "YZWMfusT-I7Z"
238
  },
239
- "execution_count": 97,
240
  "outputs": []
241
  },
242
  {
@@ -249,16 +282,18 @@
249
  "base_uri": "https://localhost:8080/"
250
  },
251
  "id": "PeJjDC0VBG_6",
252
- "outputId": "aff2cf0b-e630-4727-bbec-3cf5be4e53a0"
253
  },
254
- "execution_count": 98,
255
  "outputs": [
256
  {
257
  "output_type": "stream",
258
  "name": "stdout",
259
  "text": [
260
  "max_value: 10.589996337890625\n",
261
- "max_volume: 1460852400.0\n"
 
 
262
  ]
263
  }
264
  ]
@@ -267,72 +302,23 @@
267
  "cell_type": "code",
268
  "source": [
269
  "print(x_train.shape)\n",
270
- "x_train[1,499,:]"
271
  ],
272
  "metadata": {
273
  "colab": {
274
  "base_uri": "https://localhost:8080/"
275
  },
276
  "id": "YkI8vSguuS8A",
277
- "outputId": "6e5eeaa2-12de-4dd2-b17c-1d61e415fbd8"
278
- },
279
- "execution_count": 99,
280
- "outputs": [
281
- {
282
- "output_type": "stream",
283
- "name": "stdout",
284
- "text": [
285
- "(2082, 500, 6)\n"
286
- ]
287
- },
288
- {
289
- "output_type": "execute_result",
290
- "data": {
291
- "text/plain": [
292
- "array([ 0.00212456, 0.05712934, -0.00212456, 0.04461756, -0.22778379,\n",
293
- " 0.09233239])"
294
- ]
295
- },
296
- "metadata": {},
297
- "execution_count": 99
298
- }
299
- ]
300
- },
301
- {
302
- "cell_type": "code",
303
- "source": [
304
- "td = data.iloc[498:501]\n",
305
- "# print('td:\\n',td)\n",
306
- "td0 = create_remove_columns(td)\n",
307
- "print('td0:\\n',td0)\n",
308
- "print(decoder(y_train[0]))"
309
- ],
310
- "metadata": {
311
- "colab": {
312
- "base_uri": "https://localhost:8080/"
313
- },
314
- "id": "QaO34uSds2wJ",
315
- "outputId": "af5d9a04-214c-4a2d-c706-5af3a2a1ea5a"
316
  },
317
- "execution_count": 100,
318
  "outputs": [
319
  {
320
  "output_type": "stream",
321
  "name": "stdout",
322
  "text": [
323
- "td0:\n",
324
- " Jump Open High Low Close Adj Close \\\n",
325
- "Date \n",
326
- "2014-12-23 0.000000 28.307501 28.332500 28.115000 28.135000 25.286961 \n",
327
- "2014-12-24 0.010000 28.145000 28.177500 28.002501 28.002501 25.167873 \n",
328
- "2014-12-26 0.022499 28.025000 28.629999 28.002501 28.497499 25.612770 \n",
329
- "\n",
330
- " Volume \n",
331
- "Date \n",
332
- "2014-12-23 104113600 \n",
333
- "2014-12-24 57918400 \n",
334
- "2014-12-26 134884000 \n",
335
- "[ 0.02249908 0.60499954 -0.02249908 0.47249985]\n"
336
  ]
337
  }
338
  ]
@@ -360,14 +346,12 @@
360
  "source": [
361
  "def create_model():\n",
362
  " model = Sequential()\n",
363
- " # model.add(LSTM(units=112, return_sequences=True, input_shape=(x_train.shape[1:])))\n",
364
- " model.add(LSTM(units=1000, return_sequences=True, input_shape=(None,x_train.shape[-1],)))\n",
365
- " model.add(Dropout(0.2))\n",
366
- " model.add(LSTM(units=1000, return_sequences=True))\n",
367
- " model.add(Dropout(0.2))\n",
368
- " model.add(LSTM(units=1000))\n",
369
- " model.add(Dropout(0.2))\n",
370
- " model.add(Dense(units=4))\n",
371
  " return model\n",
372
  "\n",
373
  "model = create_model()\n",
@@ -378,35 +362,29 @@
378
  "base_uri": "https://localhost:8080/"
379
  },
380
  "id": "GXhYAKzXVfku",
381
- "outputId": "bbf96ec2-84fc-4246-9003-32c2f8083bb6"
382
  },
383
- "execution_count": 101,
384
  "outputs": [
385
  {
386
  "output_type": "stream",
387
  "name": "stdout",
388
  "text": [
389
- "Model: \"sequential_2\"\n",
390
  "_________________________________________________________________\n",
391
  " Layer (type) Output Shape Param # \n",
392
  "=================================================================\n",
393
- " lstm_6 (LSTM) (None, None, 1000) 4028000 \n",
394
- " \n",
395
- " dropout_6 (Dropout) (None, None, 1000) 0 \n",
396
  " \n",
397
- " lstm_7 (LSTM) (None, None, 1000) 8004000 \n",
398
  " \n",
399
- " dropout_7 (Dropout) (None, None, 1000) 0 \n",
400
  " \n",
401
- " lstm_8 (LSTM) (None, 1000) 8004000 \n",
402
- " \n",
403
- " dropout_8 (Dropout) (None, 1000) 0 \n",
404
- " \n",
405
- " dense_2 (Dense) (None, 4) 4004 \n",
406
  " \n",
407
  "=================================================================\n",
408
- "Total params: 20,040,004\n",
409
- "Trainable params: 20,040,004\n",
410
  "Non-trainable params: 0\n",
411
  "_________________________________________________________________\n",
412
  "None\n"
@@ -417,12 +395,25 @@
417
  {
418
  "cell_type": "code",
419
  "source": [
420
- "model.compile(optimizer='adam', loss='mean_squared_error')"
 
421
  ],
422
  "metadata": {
423
  "id": "ZhoWj_XeXQws"
424
  },
425
- "execution_count": 102,
 
 
 
 
 
 
 
 
 
 
 
 
426
  "outputs": []
427
  },
428
  {
@@ -445,16 +436,16 @@
445
  "base_uri": "https://localhost:8080/"
446
  },
447
  "id": "HDT9XPXHvqyN",
448
- "outputId": "6bc3a3e9-a7ae-48ff-e64a-fb529c5e1f75"
449
  },
450
- "execution_count": 103,
451
  "outputs": [
452
  {
453
  "output_type": "stream",
454
  "name": "stdout",
455
  "text": [
456
  "(2082, 500, 6)\n",
457
- "(2082, 4)\n"
458
  ]
459
  }
460
  ]
@@ -463,97 +454,28 @@
463
  "cell_type": "code",
464
  "source": [
465
  "# Change to False to avoid trainging the model\n",
466
- "# if False:\n",
467
- "if True:\n",
 
468
  " # Directory where the checkpoints will be saved\n",
469
  " checkpoint_dir = './training_checkpoints_'+dt.datetime.now().strftime(\"%Y%m%d%H%M%S\")\n",
470
  " # Name of the checkpoint files\n",
471
- " checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt_epoch{epoch}_loss{loss}\")\n",
 
472
  " \n",
473
  " checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(\n",
474
  " filepath=checkpoint_prefix,\n",
475
  " save_weights_only=True,\n",
476
  " monitor=\"loss\", mode=\"min\",\n",
477
  " save_best_only=True)\n",
 
478
  " model.fit(x_train, y_train, epochs=25, batch_size=32, callbacks=[checkpoint_callback])\n"
479
  ],
480
  "metadata": {
481
- "colab": {
482
- "base_uri": "https://localhost:8080/",
483
- "height": 1000
484
- },
485
- "id": "9Ccc_Ej2TmYO",
486
- "outputId": "4e7fe210-6cbb-4a9d-f856-829cfa6bced5"
487
  },
488
- "execution_count": 104,
489
- "outputs": [
490
- {
491
- "output_type": "stream",
492
- "name": "stdout",
493
- "text": [
494
- "Epoch 1/25\n",
495
- "66/66 [==============================] - 58s 773ms/step - loss: 0.0125\n",
496
- "Epoch 2/25\n",
497
- "66/66 [==============================] - 54s 816ms/step - loss: 0.0115\n",
498
- "Epoch 3/25\n",
499
- "66/66 [==============================] - 55s 841ms/step - loss: 0.0113\n",
500
- "Epoch 4/25\n",
501
- "66/66 [==============================] - 56s 845ms/step - loss: 0.0114\n",
502
- "Epoch 5/25\n",
503
- "66/66 [==============================] - 57s 859ms/step - loss: 0.0113\n",
504
- "Epoch 6/25\n",
505
- "66/66 [==============================] - 58s 886ms/step - loss: 0.0112\n",
506
- "Epoch 7/25\n",
507
- "66/66 [==============================] - 59s 889ms/step - loss: 0.0112\n",
508
- "Epoch 8/25\n",
509
- "66/66 [==============================] - 59s 890ms/step - loss: 0.0111\n",
510
- "Epoch 9/25\n",
511
- "66/66 [==============================] - 58s 875ms/step - loss: 0.0112\n",
512
- "Epoch 10/25\n",
513
- "66/66 [==============================] - 58s 880ms/step - loss: 0.0112\n",
514
- "Epoch 11/25\n",
515
- "66/66 [==============================] - 58s 881ms/step - loss: 0.0111\n",
516
- "Epoch 12/25\n",
517
- "66/66 [==============================] - 59s 892ms/step - loss: 0.0111\n",
518
- "Epoch 13/25\n",
519
- "66/66 [==============================] - 59s 895ms/step - loss: 0.0110\n",
520
- "Epoch 14/25\n",
521
- "66/66 [==============================] - 58s 880ms/step - loss: 0.0111\n",
522
- "Epoch 15/25\n",
523
- "66/66 [==============================] - 58s 882ms/step - loss: 0.0111\n",
524
- "Epoch 16/25\n",
525
- "66/66 [==============================] - 59s 896ms/step - loss: 0.0110\n",
526
- "Epoch 17/25\n",
527
- "66/66 [==============================] - 58s 882ms/step - loss: 0.0112\n",
528
- "Epoch 18/25\n",
529
- "66/66 [==============================] - 58s 882ms/step - loss: 0.0110\n",
530
- "Epoch 19/25\n",
531
- "66/66 [==============================] - 58s 882ms/step - loss: 0.0111\n",
532
- "Epoch 20/25\n",
533
- "24/66 [=========>....................] - ETA: 37s - loss: 0.0099"
534
- ]
535
- },
536
- {
537
- "output_type": "error",
538
- "ename": "KeyboardInterrupt",
539
- "evalue": "ignored",
540
- "traceback": [
541
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
542
- "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
543
- "\u001b[0;32m<ipython-input-104-78bd1a1c9ef9>\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mmonitor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"loss\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"min\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m save_best_only=True)\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m25\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcheckpoint_callback\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
544
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 65\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 66\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
545
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1683\u001b[0m ):\n\u001b[1;32m 1684\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1685\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1686\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1687\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
546
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/util/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
547
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 892\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 894\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 895\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 896\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
548
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 924\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 925\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 926\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_no_variable_creation_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 927\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_variable_creation_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 928\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
549
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 141\u001b[0m (concrete_function,\n\u001b[1;32m 142\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m--> 143\u001b[0;31m return concrete_function._call_flat(\n\u001b[0m\u001b[1;32m 144\u001b[0m filtered_flat_args, captured_inputs=concrete_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
550
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/polymorphic_function/monomorphic_function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1755\u001b[0m and executing_eagerly):\n\u001b[1;32m 1756\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1757\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1758\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1759\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n",
551
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/polymorphic_function/monomorphic_function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 379\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 381\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 382\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
552
- "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 53\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 54\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
553
- "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
554
- ]
555
- }
556
- ]
557
  },
558
  {
559
  "cell_type": "markdown",
@@ -571,20 +493,32 @@
571
  "!ls -ld training_checkpoints_*/"
572
  ],
573
  "metadata": {
574
- "id": "59CDDB0i4yTx"
 
 
 
 
575
  },
576
- "execution_count": null,
577
- "outputs": []
 
 
 
 
 
 
 
 
578
  },
579
  {
580
  "cell_type": "code",
581
  "source": [
582
- "test_model = create_model()"
583
  ],
584
  "metadata": {
585
  "id": "tpmru7nG9kbW"
586
  },
587
- "execution_count": 105,
588
  "outputs": []
589
  },
590
  {
@@ -594,9 +528,7 @@
594
  "try:\n",
595
  " checkpoint_dir\n",
596
  "except NameError: \n",
597
- " checkpoint_dir = './training_checkpoints_20230406214431'\n",
598
- "\n",
599
- "print(checkpoint_dir)\n",
600
  "\n",
601
  "def load_weights(epoch=None):\n",
602
  " if epoch is None:\n",
@@ -607,27 +539,44 @@
607
  " if re.search(f'^ckpt_epoch{epoch}_.*\\.index', entry.name):\n",
608
  " weights_file = checkpoint_dir + '/'+ entry.name[:-6]\n",
609
  "\n",
 
610
  " print(weights_file)\n",
611
- " test_model.load_weights(weights_file)\n",
612
- " return test_model\n",
613
  "\n",
614
- "test_model = load_weights()"
 
 
615
  ],
616
  "metadata": {
617
  "colab": {
618
  "base_uri": "https://localhost:8080/"
619
  },
620
  "id": "wQ0JTXsp4VKF",
621
- "outputId": "2b25d414-f188-4c14-ef43-f7af5566a3be"
622
  },
623
- "execution_count": 107,
624
  "outputs": [
 
 
 
 
 
 
 
625
  {
626
  "output_type": "stream",
627
  "name": "stdout",
628
  "text": [
629
- "./training_checkpoints_20230406230143\n",
630
- "./training_checkpoints_20230406230143/ckpt_epoch16_loss0.01097947172820568\n"
 
 
 
 
 
 
 
631
  ]
632
  }
633
  ]
@@ -635,8 +584,9 @@
635
  {
636
  "cell_type": "code",
637
  "source": [
638
- "test_start = dt.datetime(2013,1,1)\n",
639
- "end = dt.datetime(2023,4,5)\n",
 
640
  "\n",
641
  "yfin.pdr_override()\n",
642
  "test_data = web.data.get_data_yahoo(ticker, test_start, test_end)"
@@ -646,9 +596,9 @@
646
  "base_uri": "https://localhost:8080/"
647
  },
648
  "id": "Mf4q97pfaSCA",
649
- "outputId": "7355b53f-c879-4296-d24a-bb8bd739e5d8"
650
  },
651
- "execution_count": 114,
652
  "outputs": [
653
  {
654
  "output_type": "stream",
@@ -659,13 +609,37 @@
659
  }
660
  ]
661
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662
  {
663
  "cell_type": "code",
664
  "source": [
665
  "# def close_tester(model, test_data, scaler=None):\n",
666
- "model = test_model\n",
667
  "scaler = scaler\n",
668
- "test_x_train, test_y_train, _, _ = preprocessing(data, scaler=scaler)\n",
669
  "print(test_x_train.shape)\n",
670
  "print(test_y_train.shape)\n",
671
  "results = model.predict(test_x_train)\n",
@@ -678,9 +652,9 @@
678
  "base_uri": "https://localhost:8080/"
679
  },
680
  "id": "MqCeMf3UoxZm",
681
- "outputId": "a0591f06-f804-41e9-b973-627a7693ff89"
682
  },
683
- "execution_count": 115,
684
  "outputs": [
685
  {
686
  "output_type": "stream",
@@ -688,9 +662,11 @@
688
  "text": [
689
  "max_value: 10.589996337890625\n",
690
  "max_volume: 1460852400.0\n",
691
- "(2082, 500, 6)\n",
692
- "(2082, 4)\n",
693
- "66/66 [==============================] - 18s 275ms/step\n"
 
 
694
  ]
695
  }
696
  ]
@@ -705,7 +681,7 @@
705
  "for result, expected in zip(results[:], test_y_train[:]):\n",
706
  " # print(result)\n",
707
  " # print(expected)\n",
708
- " comparer = result[3] * expected[3]\n",
709
  " if comparer > 0:\n",
710
  " right_counter += 1\n",
711
  " elif comparer == 0:\n",
@@ -726,18 +702,18 @@
726
  "base_uri": "https://localhost:8080/"
727
  },
728
  "id": "AVYFQZnqEqhx",
729
- "outputId": "7353f76c-f2e6-4a48-ba31-74ab67bb73ea"
730
  },
731
- "execution_count": 120,
732
  "outputs": [
733
  {
734
  "output_type": "stream",
735
  "name": "stdout",
736
  "text": [
737
- "right_counter : 1118\n",
738
  "no_action_counter : 0\n",
739
- "wrong_counter : 959\n",
740
- "success rate: 53.6983669548511%\n"
741
  ]
742
  }
743
  ]
@@ -752,25 +728,25 @@
752
  "base_uri": "https://localhost:8080/"
753
  },
754
  "id": "gyhzy_l6sAvi",
755
- "outputId": "78f5d2cf-cd21-47b1-b58e-6b3321a802bd"
756
  },
757
- "execution_count": 123,
758
  "outputs": [
759
  {
760
  "output_type": "execute_result",
761
  "data": {
762
  "text/plain": [
763
- "Open 2.802500e+01\n",
764
- "High 2.863000e+01\n",
765
- "Low 2.800250e+01\n",
766
- "Close 2.849750e+01\n",
767
- "Adj Close 2.561277e+01\n",
768
- "Volume 1.348840e+08\n",
769
- "Name: 2014-12-26 00:00:00, dtype: float64"
770
  ]
771
  },
772
  "metadata": {},
773
- "execution_count": 123
774
  }
775
  ]
776
  }
 
4
  "metadata": {
5
  "colab": {
6
  "provenance": [],
7
+ "authorship_tag": "ABX9TyO1k4BL8RYqJqf+FTqQWuh+",
8
  "include_colab_link": true
9
  },
10
  "kernelspec": {
 
33
  "source": [
34
  "from google.colab import drive\n",
35
  "drive.mount('/content/drive')\n",
36
+ "project_path = '/content/drive/MyDrive/projects/Stock_Predicter/v1'\n",
37
  "%cd $project_path"
38
  ],
39
  "metadata": {
 
41
  "base_uri": "https://localhost:8080/"
42
  },
43
  "id": "Xr3Qozgfktoc",
44
+ "outputId": "7d93f2be-afa1-402c-ec77-24e5d1cf5f8e"
45
  },
46
+ "execution_count": 1,
47
  "outputs": [
48
  {
49
  "output_type": "stream",
50
  "name": "stdout",
51
  "text": [
52
+ "Mounted at /content/drive\n",
53
+ "/content/drive/MyDrive/projects/Stock_Predicter/v1\n"
54
  ]
55
  }
56
  ]
57
  },
58
  {
59
  "cell_type": "code",
60
+ "execution_count": 2,
61
  "metadata": {
62
  "id": "e8SQqogMQYLh"
63
  },
 
99
  "metadata": {
100
  "id": "O6dtJpJwS5Eg"
101
  },
102
+ "execution_count": 3,
103
  "outputs": []
104
  },
105
  {
 
113
  "base_uri": "https://localhost:8080/"
114
  },
115
  "id": "LwPyk8Uh-Zz_",
116
+ "outputId": "5a636265-2f20-46ad-bc0d-30adbf2b630b"
117
  },
118
+ "execution_count": 4,
119
  "outputs": [
120
  {
121
  "output_type": "stream",
 
150
  "metadata": {
151
  "id": "Bpym8x-Kxf0p"
152
  },
153
+ "execution_count": 5,
154
  "outputs": []
155
  },
156
  {
 
192
  "metadata": {
193
  "id": "v9RoqzBvtrOb"
194
  },
195
+ "execution_count": 6,
196
  "outputs": []
197
  },
198
  {
 
203
  " \n",
204
  " x_train_list = []\n",
205
  " y_train_list = []\n",
206
+ " print('shape norm_data')\n",
207
+ " print(norm_data.shape)\n",
208
  " \n",
209
  " for i in range(prediction_days, len(norm_data)):\n",
210
+ " x_train_list.append(norm_data.iloc[i-prediction_days:i])\n",
211
+ " y_train_list.append(norm_data.iloc[i-prediction_days+1:i+1,0:4])\n",
212
  " \n",
213
  " x_train = np.array(x_train_list)\n",
214
  " y_train = np.array(y_train_list)\n",
 
217
  "metadata": {
218
  "id": "jMXkRAYFomHM"
219
  },
220
+ "execution_count": 7,
221
  "outputs": []
222
  },
223
+ {
224
+ "cell_type": "code",
225
+ "source": [
226
+ "x = np.random.randint(5, size=(5,6))\n",
227
+ "print(x)\n",
228
+ "print(x[2:4, 0:4])"
229
+ ],
230
+ "metadata": {
231
+ "colab": {
232
+ "base_uri": "https://localhost:8080/"
233
+ },
234
+ "id": "TX8fsigbOOzE",
235
+ "outputId": "a5e4e0f3-8814-4e28-d5e2-33f4e80954b5"
236
+ },
237
+ "execution_count": 8,
238
+ "outputs": [
239
+ {
240
+ "output_type": "stream",
241
+ "name": "stdout",
242
+ "text": [
243
+ "[[0 3 4 2 4 1]\n",
244
+ " [4 4 1 0 3 4]\n",
245
+ " [0 3 3 3 2 0]\n",
246
+ " [3 1 3 3 0 4]\n",
247
+ " [1 0 0 1 0 3]]\n",
248
+ "[[0 3 3 3]\n",
249
+ " [3 1 3 3]]\n"
250
+ ]
251
+ }
252
+ ]
253
+ },
254
  {
255
  "cell_type": "code",
256
  "source": [
 
269
  "metadata": {
270
  "id": "YZWMfusT-I7Z"
271
  },
272
+ "execution_count": 9,
273
  "outputs": []
274
  },
275
  {
 
282
  "base_uri": "https://localhost:8080/"
283
  },
284
  "id": "PeJjDC0VBG_6",
285
+ "outputId": "ec7bf037-3d03-47b5-b97b-43e19b9ac9ea"
286
  },
287
+ "execution_count": 10,
288
  "outputs": [
289
  {
290
  "output_type": "stream",
291
  "name": "stdout",
292
  "text": [
293
  "max_value: 10.589996337890625\n",
294
+ "max_volume: 1460852400.0\n",
295
+ "shape norm_data\n",
296
+ "(2582, 6)\n"
297
  ]
298
  }
299
  ]
 
302
  "cell_type": "code",
303
  "source": [
304
  "print(x_train.shape)\n",
305
+ "print(y_train.shape)"
306
  ],
307
  "metadata": {
308
  "colab": {
309
  "base_uri": "https://localhost:8080/"
310
  },
311
  "id": "YkI8vSguuS8A",
312
+ "outputId": "51e71e32-7e5b-4686-8e01-872ea97f976f"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
  },
314
+ "execution_count": 11,
315
  "outputs": [
316
  {
317
  "output_type": "stream",
318
  "name": "stdout",
319
  "text": [
320
+ "(2082, 500, 6)\n",
321
+ "(2082, 500, 4)\n"
 
 
 
 
 
 
 
 
 
 
 
322
  ]
323
  }
324
  ]
 
346
  "source": [
347
  "def create_model():\n",
348
  " model = Sequential()\n",
349
+ " model.add(LSTM(units=1024, return_sequences=True, input_shape=(None,x_train.shape[-1],)))\n",
350
+ " # model.add(Dropout(0.2))\n",
351
+ " model.add(LSTM(units=1024, return_sequences=True))\n",
352
+ " # model.add(Dropout(0.2))\n",
353
+ " model.add(LSTM(units=1024, return_sequences=True))\n",
354
+ " model.add(Dense(4))\n",
 
 
355
  " return model\n",
356
  "\n",
357
  "model = create_model()\n",
 
362
  "base_uri": "https://localhost:8080/"
363
  },
364
  "id": "GXhYAKzXVfku",
365
+ "outputId": "0a471170-8a4b-416e-874c-ec5061a21744"
366
  },
367
+ "execution_count": 12,
368
  "outputs": [
369
  {
370
  "output_type": "stream",
371
  "name": "stdout",
372
  "text": [
373
+ "Model: \"sequential\"\n",
374
  "_________________________________________________________________\n",
375
  " Layer (type) Output Shape Param # \n",
376
  "=================================================================\n",
377
+ " lstm (LSTM) (None, None, 1024) 4222976 \n",
 
 
378
  " \n",
379
+ " lstm_1 (LSTM) (None, None, 1024) 8392704 \n",
380
  " \n",
381
+ " lstm_2 (LSTM) (None, None, 1024) 8392704 \n",
382
  " \n",
383
+ " dense (Dense) (None, None, 4) 4100 \n",
 
 
 
 
384
  " \n",
385
  "=================================================================\n",
386
+ "Total params: 21,012,484\n",
387
+ "Trainable params: 21,012,484\n",
388
  "Non-trainable params: 0\n",
389
  "_________________________________________________________________\n",
390
  "None\n"
 
395
  {
396
  "cell_type": "code",
397
  "source": [
398
+ "# model.compile(optimizer='adam', loss='mean_squared_error')\n",
399
+ "model.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError())"
400
  ],
401
  "metadata": {
402
  "id": "ZhoWj_XeXQws"
403
  },
404
+ "execution_count": 13,
405
+ "outputs": []
406
+ },
407
+ {
408
+ "cell_type": "code",
409
+ "source": [
410
+ "if False:\n",
411
+ " model.load_weights('./training_checkpoints_20230408062729/ckpt_epoch24_loss0.00024580140598118305')"
412
+ ],
413
+ "metadata": {
414
+ "id": "jYCXXkRZraaF"
415
+ },
416
+ "execution_count": 14,
417
  "outputs": []
418
  },
419
  {
 
436
  "base_uri": "https://localhost:8080/"
437
  },
438
  "id": "HDT9XPXHvqyN",
439
+ "outputId": "041baee8-f87c-47aa-af07-8fb6dc56186f"
440
  },
441
+ "execution_count": 15,
442
  "outputs": [
443
  {
444
  "output_type": "stream",
445
  "name": "stdout",
446
  "text": [
447
  "(2082, 500, 6)\n",
448
+ "(2082, 500, 4)\n"
449
  ]
450
  }
451
  ]
 
454
  "cell_type": "code",
455
  "source": [
456
  "# Change to False to avoid trainging the model\n",
457
+ "to_train = True\n",
458
+ "if to_train:\n",
459
+ "# if True:\n",
460
  " # Directory where the checkpoints will be saved\n",
461
  " checkpoint_dir = './training_checkpoints_'+dt.datetime.now().strftime(\"%Y%m%d%H%M%S\")\n",
462
  " # Name of the checkpoint files\n",
463
+ " # checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt_epoch{epoch}_loss{loss}\")\n",
464
+ " checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt\")\n",
465
  " \n",
466
  " checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(\n",
467
  " filepath=checkpoint_prefix,\n",
468
  " save_weights_only=True,\n",
469
  " monitor=\"loss\", mode=\"min\",\n",
470
  " save_best_only=True)\n",
471
+ "\n",
472
  " model.fit(x_train, y_train, epochs=25, batch_size=32, callbacks=[checkpoint_callback])\n"
473
  ],
474
  "metadata": {
475
+ "id": "9Ccc_Ej2TmYO"
 
 
 
 
 
476
  },
477
+ "execution_count": 16,
478
+ "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
  },
480
  {
481
  "cell_type": "markdown",
 
493
  "!ls -ld training_checkpoints_*/"
494
  ],
495
  "metadata": {
496
+ "id": "59CDDB0i4yTx",
497
+ "colab": {
498
+ "base_uri": "https://localhost:8080/"
499
+ },
500
+ "outputId": "fa0788e1-b75e-45dc-a95d-ec3e24d00d70"
501
  },
502
+ "execution_count": 17,
503
+ "outputs": [
504
+ {
505
+ "output_type": "stream",
506
+ "name": "stdout",
507
+ "text": [
508
+ "drwx------ 2 root root 4096 Apr 8 07:34 training_checkpoints_20230408073359/\n"
509
+ ]
510
+ }
511
+ ]
512
  },
513
  {
514
  "cell_type": "code",
515
  "source": [
516
+ "model = create_model()"
517
  ],
518
  "metadata": {
519
  "id": "tpmru7nG9kbW"
520
  },
521
+ "execution_count": 18,
522
  "outputs": []
523
  },
524
  {
 
528
  "try:\n",
529
  " checkpoint_dir\n",
530
  "except NameError: \n",
531
+ " checkpoint_dir = 'training_checkpoints_20230408073359'\n",
 
 
532
  "\n",
533
  "def load_weights(epoch=None):\n",
534
  " if epoch is None:\n",
 
539
  " if re.search(f'^ckpt_epoch{epoch}_.*\\.index', entry.name):\n",
540
  " weights_file = checkpoint_dir + '/'+ entry.name[:-6]\n",
541
  "\n",
542
+ " print('weights_file')\n",
543
  " print(weights_file)\n",
544
+ " model.load_weights(weights_file)\n",
545
+ " return model\n",
546
  "\n",
547
+ "model = load_weights(epoch=None)\n",
548
+ "model_filepath = 'saved_model'\n",
549
+ "model.save(model_filepath)"
550
  ],
551
  "metadata": {
552
  "colab": {
553
  "base_uri": "https://localhost:8080/"
554
  },
555
  "id": "wQ0JTXsp4VKF",
556
+ "outputId": "57440f25-6468-404c-f0a6-e99f004f9e67"
557
  },
558
+ "execution_count": 28,
559
  "outputs": [
560
+ {
561
+ "output_type": "stream",
562
+ "name": "stderr",
563
+ "text": [
564
+ "WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
565
+ ]
566
+ },
567
  {
568
  "output_type": "stream",
569
  "name": "stdout",
570
  "text": [
571
+ "weights_file\n",
572
+ "training_checkpoints_20230408073359/ckpt\n"
573
+ ]
574
+ },
575
+ {
576
+ "output_type": "stream",
577
+ "name": "stderr",
578
+ "text": [
579
+ "WARNING:absl:Found untraced functions such as lstm_cell_3_layer_call_fn, lstm_cell_3_layer_call_and_return_conditional_losses, lstm_cell_4_layer_call_fn, lstm_cell_4_layer_call_and_return_conditional_losses, lstm_cell_5_layer_call_fn while saving (showing 5 of 6). These functions will not be directly callable after loading.\n"
580
  ]
581
  }
582
  ]
 
584
  {
585
  "cell_type": "code",
586
  "source": [
587
+ "test_start = dt.datetime(2016,1,1)\n",
588
+ "test_end = dt.datetime(2023,4,5)\n",
589
+ "ticker = 'AAPL'\n",
590
  "\n",
591
  "yfin.pdr_override()\n",
592
  "test_data = web.data.get_data_yahoo(ticker, test_start, test_end)"
 
596
  "base_uri": "https://localhost:8080/"
597
  },
598
  "id": "Mf4q97pfaSCA",
599
+ "outputId": "5682a5dd-6968-4098-c203-31bc6c14e47c"
600
  },
601
+ "execution_count": 24,
602
  "outputs": [
603
  {
604
  "output_type": "stream",
 
609
  }
610
  ]
611
  },
612
+ {
613
+ "cell_type": "code",
614
+ "source": [
615
+ "load_whole_model = False\n",
616
+ "if load_whole_model:\n",
617
+ " model = tf.keras.models.load_model(model_filepath)"
618
+ ],
619
+ "metadata": {
620
+ "colab": {
621
+ "base_uri": "https://localhost:8080/"
622
+ },
623
+ "id": "uloiDJXRbrJs",
624
+ "outputId": "a3aeb021-5555-413f-eb40-cce7ebe60ed5"
625
+ },
626
+ "execution_count": 29,
627
+ "outputs": [
628
+ {
629
+ "output_type": "stream",
630
+ "name": "stderr",
631
+ "text": [
632
+ "WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.\n"
633
+ ]
634
+ }
635
+ ]
636
+ },
637
  {
638
  "cell_type": "code",
639
  "source": [
640
  "# def close_tester(model, test_data, scaler=None):\n",
 
641
  "scaler = scaler\n",
642
+ "test_x_train, test_y_train, _, _ = preprocessing(test_data, scaler=scaler)\n",
643
  "print(test_x_train.shape)\n",
644
  "print(test_y_train.shape)\n",
645
  "results = model.predict(test_x_train)\n",
 
652
  "base_uri": "https://localhost:8080/"
653
  },
654
  "id": "MqCeMf3UoxZm",
655
+ "outputId": "1a448123-6253-4585-c7af-5ff7491c1628"
656
  },
657
+ "execution_count": 30,
658
  "outputs": [
659
  {
660
  "output_type": "stream",
 
662
  "text": [
663
  "max_value: 10.589996337890625\n",
664
  "max_volume: 1460852400.0\n",
665
+ "shape norm_data\n",
666
+ "(1826, 6)\n",
667
+ "(1326, 500, 6)\n",
668
+ "(1326, 500, 4)\n",
669
+ "42/42 [==============================] - 12s 270ms/step\n"
670
  ]
671
  }
672
  ]
 
681
  "for result, expected in zip(results[:], test_y_train[:]):\n",
682
  " # print(result)\n",
683
  " # print(expected)\n",
684
+ " comparer = result[-1][3] * expected[-1][3]\n",
685
  " if comparer > 0:\n",
686
  " right_counter += 1\n",
687
  " elif comparer == 0:\n",
 
702
  "base_uri": "https://localhost:8080/"
703
  },
704
  "id": "AVYFQZnqEqhx",
705
+ "outputId": "8110f58a-7344-42b0-ed9a-ba77a4999e30"
706
  },
707
+ "execution_count": 31,
708
  "outputs": [
709
  {
710
  "output_type": "stream",
711
  "name": "stdout",
712
  "text": [
713
+ "right_counter : 1300\n",
714
  "no_action_counter : 0\n",
715
+ "wrong_counter : 22\n",
716
+ "success rate: 98.03921568627452%\n"
717
  ]
718
  }
719
  ]
 
728
  "base_uri": "https://localhost:8080/"
729
  },
730
  "id": "gyhzy_l6sAvi",
731
+ "outputId": "6bd3c88a-b61b-44e8-d16d-0880a17ebab2"
732
  },
733
+ "execution_count": 32,
734
  "outputs": [
735
  {
736
  "output_type": "execute_result",
737
  "data": {
738
  "text/plain": [
739
+ "Open 4.252500e+01\n",
740
+ "High 4.269500e+01\n",
741
+ "Low 4.242750e+01\n",
742
+ "Close 4.265000e+01\n",
743
+ "Adj Close 4.049405e+01\n",
744
+ "Volume 8.599280e+07\n",
745
+ "Name: 2017-12-27 00:00:00, dtype: float64"
746
  ]
747
  },
748
  "metadata": {},
749
+ "execution_count": 32
750
  }
751
  ]
752
  }