Spaces:
Runtime error
Runtime error
Create notebook stock predictor
Browse files- stock_predictor.ipynb +363 -0
stock_predictor.ipynb
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"authorship_tag": "ABX9TyNi+Ewkxp2IZ8viyYUSIC21",
|
8 |
+
"include_colab_link": true
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"gpuClass": "standard"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {
|
23 |
+
"id": "view-in-github",
|
24 |
+
"colab_type": "text"
|
25 |
+
},
|
26 |
+
"source": [
|
27 |
+
"<a href=\"https://colab.research.google.com/github/jsebdev/Stock_Predictor/blob/main/stock_predictor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"source": [
|
33 |
+
"from google.colab import drive\n",
|
34 |
+
"drive.mount('/content/drive')\n",
|
35 |
+
"project_path = '/content/drive/MyDrive/projects/Stock_Predicter'\n",
|
36 |
+
"%cd $project_path"
|
37 |
+
],
|
38 |
+
"metadata": {
|
39 |
+
"colab": {
|
40 |
+
"base_uri": "https://localhost:8080/"
|
41 |
+
},
|
42 |
+
"id": "Xr3Qozgfktoc",
|
43 |
+
"outputId": "78396a70-6eaa-462b-f7ca-75e282dab940"
|
44 |
+
},
|
45 |
+
"execution_count": null,
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"output_type": "stream",
|
49 |
+
"name": "stdout",
|
50 |
+
"text": [
|
51 |
+
"Mounted at /content/drive\n",
|
52 |
+
"/content/drive/MyDrive/projects/Stock_Predicter\n"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"source": [
|
60 |
+
"# install dotenv\n",
|
61 |
+
"!pip install python-dotenv"
|
62 |
+
],
|
63 |
+
"metadata": {
|
64 |
+
"colab": {
|
65 |
+
"base_uri": "https://localhost:8080/"
|
66 |
+
},
|
67 |
+
"id": "E0itUkoVeKYn",
|
68 |
+
"outputId": "a876789d-096c-4301-e316-023f87e2e5de"
|
69 |
+
},
|
70 |
+
"execution_count": null,
|
71 |
+
"outputs": [
|
72 |
+
{
|
73 |
+
"output_type": "stream",
|
74 |
+
"name": "stdout",
|
75 |
+
"text": [
|
76 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
77 |
+
"Collecting python-dotenv\n",
|
78 |
+
" Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n",
|
79 |
+
"Installing collected packages: python-dotenv\n",
|
80 |
+
"Successfully installed python-dotenv-1.0.0\n"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"source": [
|
88 |
+
"# install polygon client\n",
|
89 |
+
"!pip install polygon-api-client"
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"colab": {
|
93 |
+
"base_uri": "https://localhost:8080/"
|
94 |
+
},
|
95 |
+
"id": "2bylenpXc1oB",
|
96 |
+
"outputId": "c47ad32c-3c50-41d9-a6ce-c051fb6639b5"
|
97 |
+
},
|
98 |
+
"execution_count": null,
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"output_type": "stream",
|
102 |
+
"name": "stdout",
|
103 |
+
"text": [
|
104 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
105 |
+
"Collecting polygon-api-client\n",
|
106 |
+
" Downloading polygon_api_client-1.8.5-py3-none-any.whl (38 kB)\n",
|
107 |
+
"Requirement already satisfied: urllib3<2.0.0,>=1.26.9 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (1.26.15)\n",
|
108 |
+
"Collecting websockets<11.0,>=10.3\n",
|
109 |
+
" Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n",
|
110 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.5/106.5 KB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
111 |
+
"\u001b[?25hRequirement already satisfied: certifi<2023.0.0,>=2022.5.18 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (2022.12.7)\n",
|
112 |
+
"Installing collected packages: websockets, polygon-api-client\n",
|
113 |
+
"Successfully installed polygon-api-client-1.8.5 websockets-10.4\n"
|
114 |
+
]
|
115 |
+
}
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {
|
122 |
+
"id": "e8SQqogMQYLh"
|
123 |
+
},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"import numpy as np\n",
|
127 |
+
"import matplotlib.pyplot as plt\n",
|
128 |
+
"import pandas as pd\n",
|
129 |
+
"import pandas_datareader as web\n",
|
130 |
+
"import datetime as dt\n",
|
131 |
+
"import yfinance as yfin\n",
|
132 |
+
"\n",
|
133 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
134 |
+
"from tensorflow.keras.models import Sequential\n",
|
135 |
+
"from tensorflow.keras.layers import Dense, Dropout, LSTM\n",
|
136 |
+
"from dotenv import dotenv_values\n",
|
137 |
+
"from polygon import RESTClient\n"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"source": [
|
143 |
+
"config = dotenv_values(\"env_stock_predictor\")\n",
|
144 |
+
"POLIGON_API_KEY = config['POLIGON_API_KEY']"
|
145 |
+
],
|
146 |
+
"metadata": {
|
147 |
+
"id": "MwIQIS6GeSJr"
|
148 |
+
},
|
149 |
+
"execution_count": null,
|
150 |
+
"outputs": []
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"source": [
|
155 |
+
"# Select a company for now\n",
|
156 |
+
"ticker = 'AAPL'\n",
|
157 |
+
"\n",
|
158 |
+
"start = dt.datetime(2013,1,1)\n",
|
159 |
+
"end = dt.date.today()\n",
|
160 |
+
"# end = dt.datetime(2023,3,15)\n",
|
161 |
+
"\n",
|
162 |
+
"# data = web.DataReader(ticker, 'yahoo', start, end) # This trows \"TypeError: string indices must be integers\"\n",
|
163 |
+
"\n",
|
164 |
+
"yfin.pdr_override()\n",
|
165 |
+
"data = web.data.get_data_yahoo(ticker, start, end)\n",
|
166 |
+
"print(data.tail())"
|
167 |
+
],
|
168 |
+
"metadata": {
|
169 |
+
"colab": {
|
170 |
+
"base_uri": "https://localhost:8080/"
|
171 |
+
},
|
172 |
+
"id": "O6dtJpJwS5Eg",
|
173 |
+
"outputId": "8782cb37-06ce-47c0-b352-f1f82a6db7de"
|
174 |
+
},
|
175 |
+
"execution_count": null,
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"output_type": "stream",
|
179 |
+
"name": "stdout",
|
180 |
+
"text": [
|
181 |
+
"\r[*********************100%***********************] 1 of 1 completed\n",
|
182 |
+
" Open High Low Close Adj Close \\\n",
|
183 |
+
"Date \n",
|
184 |
+
"2023-03-29 159.369995 161.050003 159.350006 160.770004 160.770004 \n",
|
185 |
+
"2023-03-30 161.529999 162.470001 161.270004 162.360001 162.360001 \n",
|
186 |
+
"2023-03-31 162.440002 165.000000 161.910004 164.899994 164.899994 \n",
|
187 |
+
"2023-04-03 164.270004 166.289993 164.220001 166.169998 166.169998 \n",
|
188 |
+
"2023-04-04 166.600006 166.839996 165.110001 165.630005 165.630005 \n",
|
189 |
+
"\n",
|
190 |
+
" Volume \n",
|
191 |
+
"Date \n",
|
192 |
+
"2023-03-29 51305700 \n",
|
193 |
+
"2023-03-30 49501700 \n",
|
194 |
+
"2023-03-31 68694700 \n",
|
195 |
+
"2023-04-03 56976200 \n",
|
196 |
+
"2023-04-04 46237900 \n"
|
197 |
+
]
|
198 |
+
}
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"source": [
|
204 |
+
"# using the poligon API\n",
|
205 |
+
"poligon_client = RESTClient(api_key=POLIGON_API_KEY)"
|
206 |
+
],
|
207 |
+
"metadata": {
|
208 |
+
"id": "LEfjQ4cZi0tn"
|
209 |
+
},
|
210 |
+
"execution_count": null,
|
211 |
+
"outputs": []
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"source": [
|
216 |
+
"# bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=\"2023-01-09\", to=\"2023-01-15\")\n",
|
217 |
+
"bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=start, to=end)\n"
|
218 |
+
],
|
219 |
+
"metadata": {
|
220 |
+
"id": "edWz4rdxdwqh"
|
221 |
+
},
|
222 |
+
"execution_count": null,
|
223 |
+
"outputs": []
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"source": [
|
228 |
+
"for bar in bars[-5:]:\n",
|
229 |
+
" print(type(bar))\n",
|
230 |
+
" print(bar)\n",
|
231 |
+
" print(bar.timestamp)\n",
|
232 |
+
" print(dt.date.fromtimestamp(bar.timestamp/1000))"
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"colab": {
|
236 |
+
"base_uri": "https://localhost:8080/"
|
237 |
+
},
|
238 |
+
"id": "IX_o3NTggblq",
|
239 |
+
"outputId": "7a974d77-952e-425b-c702-e9a60fbb89be"
|
240 |
+
},
|
241 |
+
"execution_count": null,
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"output_type": "stream",
|
245 |
+
"name": "stdout",
|
246 |
+
"text": [
|
247 |
+
"<class 'polygon.rest.models.aggs.Agg'>\n",
|
248 |
+
"Agg(open=152.81, high=153.47, low=151.83, close=152.87, volume=47204791.0, vwap=152.6973, timestamp=1678251600000, transactions=405203, otc=None)\n",
|
249 |
+
"1678251600000\n",
|
250 |
+
"2023-03-08\n",
|
251 |
+
"<class 'polygon.rest.models.aggs.Agg'>\n",
|
252 |
+
"Agg(open=153.559, high=154.535, low=150.225, close=150.59, volume=53833122.0, vwap=152.4689, timestamp=1678338000000, transactions=480909, otc=None)\n",
|
253 |
+
"1678338000000\n",
|
254 |
+
"2023-03-09\n",
|
255 |
+
"<class 'polygon.rest.models.aggs.Agg'>\n",
|
256 |
+
"Agg(open=150.21, high=150.94, low=147.6096, close=148.5, volume=68559600.0, vwap=149.0716, timestamp=1678424400000, transactions=611457, otc=None)\n",
|
257 |
+
"1678424400000\n",
|
258 |
+
"2023-03-10\n",
|
259 |
+
"<class 'polygon.rest.models.aggs.Agg'>\n",
|
260 |
+
"Agg(open=147.805, high=153.14, low=147.7, close=150.47, volume=84457122.0, vwap=151.1835, timestamp=1678680000000, transactions=760660, otc=None)\n",
|
261 |
+
"1678680000000\n",
|
262 |
+
"2023-03-13\n",
|
263 |
+
"<class 'polygon.rest.models.aggs.Agg'>\n",
|
264 |
+
"Agg(open=151.28, high=153.4, low=150.1, close=152.59, volume=72045893.0, vwap=152.1061, timestamp=1678766400000, transactions=565196, otc=None)\n",
|
265 |
+
"1678766400000\n",
|
266 |
+
"2023-03-14\n"
|
267 |
+
]
|
268 |
+
}
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"source": [
|
274 |
+
"print(type(spy))\n",
|
275 |
+
"print(spy.head())"
|
276 |
+
],
|
277 |
+
"metadata": {
|
278 |
+
"colab": {
|
279 |
+
"base_uri": "https://localhost:8080/"
|
280 |
+
},
|
281 |
+
"id": "EMoXLT5vd8Ex",
|
282 |
+
"outputId": "d3c00e06-bf0a-4384-a21d-643d72a6848c"
|
283 |
+
},
|
284 |
+
"execution_count": null,
|
285 |
+
"outputs": [
|
286 |
+
{
|
287 |
+
"output_type": "stream",
|
288 |
+
"name": "stdout",
|
289 |
+
"text": [
|
290 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
291 |
+
" Open High Low Close Adj Close \\\n",
|
292 |
+
"Date \n",
|
293 |
+
"2022-10-24 375.890015 380.059998 373.109985 378.869995 375.704315 \n",
|
294 |
+
"2022-10-25 378.790009 385.250000 378.670013 384.920013 381.703735 \n",
|
295 |
+
"2022-10-26 381.619995 387.579987 381.350006 382.019989 378.827972 \n",
|
296 |
+
"2022-10-27 383.070007 385.000000 379.329987 379.980011 376.805023 \n",
|
297 |
+
"2022-10-28 379.869995 389.519989 379.679993 389.019989 385.769470 \n",
|
298 |
+
"\n",
|
299 |
+
" Volume \n",
|
300 |
+
"Date \n",
|
301 |
+
"2022-10-24 85436900 \n",
|
302 |
+
"2022-10-25 78846300 \n",
|
303 |
+
"2022-10-26 104087300 \n",
|
304 |
+
"2022-10-27 81971800 \n",
|
305 |
+
"2022-10-28 100302000 \n"
|
306 |
+
]
|
307 |
+
}
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"source": [
|
313 |
+
"df = web.DataReader('GE', 'yahoo', start='2019-09-10', end='2019-10-09')\n",
|
314 |
+
"print(start)\n",
|
315 |
+
"print(end)"
|
316 |
+
],
|
317 |
+
"metadata": {
|
318 |
+
"colab": {
|
319 |
+
"base_uri": "https://localhost:8080/",
|
320 |
+
"height": 353
|
321 |
+
},
|
322 |
+
"id": "THGxnQbSUgvw",
|
323 |
+
"outputId": "82234614-328b-40b7-9024-fa32e20b2858"
|
324 |
+
},
|
325 |
+
"execution_count": null,
|
326 |
+
"outputs": [
|
327 |
+
{
|
328 |
+
"output_type": "error",
|
329 |
+
"ename": "TypeError",
|
330 |
+
"evalue": "ignored",
|
331 |
+
"traceback": [
|
332 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
333 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
334 |
+
"\u001b[0;32m<ipython-input-17-078ffcb02a17>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'GE'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'yahoo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-09-10'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-10-09'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
335 |
+
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 205\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 207\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 208\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
336 |
+
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/data.py\u001b[0m in \u001b[0;36mDataReader\u001b[0;34m(name, data_source, start, end, retry_count, pause, session, api_key)\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_source\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"yahoo\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 370\u001b[0;31m return YahooDailyReader(\n\u001b[0m\u001b[1;32m 371\u001b[0m \u001b[0msymbols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 372\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
337 |
+
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/base.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0;31m# If a single symbol, (e.g., 'GOOG')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstring_types\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_read_one_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_params\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;31m# Or multiple symbols, (e.g., ['GOOG', 'AAPL', 'MSFT'])\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
338 |
+
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/yahoo/daily.py\u001b[0m in \u001b[0;36m_read_one_data\u001b[0;34m(self, url, params)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mptrn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDOTALL\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroup\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 153\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"context\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dispatcher\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"stores\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"HistoricalPriceStore\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 154\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"No data fetched for symbol {} using {}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
339 |
+
"\u001b[0;31mTypeError\u001b[0m: string indices must be integers"
|
340 |
+
]
|
341 |
+
}
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"source": [
|
347 |
+
"scaler = MinMaxScaler(feature_range=(0,1))\n",
|
348 |
+
"scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1))\n",
|
349 |
+
"prediction_days = 60\n",
|
350 |
+
"\n",
|
351 |
+
"x_train = []\n",
|
352 |
+
"y_train = []\n",
|
353 |
+
"\n",
|
354 |
+
"for x in range()"
|
355 |
+
],
|
356 |
+
"metadata": {
|
357 |
+
"id": "ccV59ukvXaNF"
|
358 |
+
},
|
359 |
+
"execution_count": null,
|
360 |
+
"outputs": []
|
361 |
+
}
|
362 |
+
]
|
363 |
+
}
|