{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyPcuRkmq64yTPWXIBG7lLf0", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "gpuClass": "standard" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')\n", "project_path = '/content/drive/MyDrive/projects/Stock_Predicter'\n", "%cd $project_path" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Xr3Qozgfktoc", "outputId": "28119a16-7e41-437a-969b-3713f019548e" }, "execution_count": 1, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n", "/content/drive/MyDrive/projects/Stock_Predicter\n" ] } ] }, { "cell_type": "code", "source": [ "# install dotenv\n", "!pip install python-dotenv" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "E0itUkoVeKYn", "outputId": "bc2a7293-a9f0-4f4d-d42f-f7ecfab7e5c5" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting python-dotenv\n", " Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n", "Installing collected packages: python-dotenv\n", "Successfully installed python-dotenv-1.0.0\n" ] } ] }, { "cell_type": "code", "source": [ "# install polygon client\n", "!pip install polygon-api-client" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2bylenpXc1oB", "outputId": "74b2587b-2b58-42a1-f5bf-c3866c13b8a1" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting polygon-api-client\n", " Downloading polygon_api_client-1.8.5-py3-none-any.whl (38 kB)\n", "Collecting websockets<11.0,>=10.3\n", " Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.5/106.5 KB\u001b[0m \u001b[31m11.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: urllib3<2.0.0,>=1.26.9 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (1.26.15)\n", "Requirement already satisfied: certifi<2023.0.0,>=2022.5.18 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (2022.12.7)\n", "Installing collected packages: websockets, polygon-api-client\n", "Successfully installed polygon-api-client-1.8.5 websockets-10.4\n" ] } ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "e8SQqogMQYLh" }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import pandas_datareader as web\n", "import datetime as dt\n", "import yfinance as yfin\n", "\n", "from sklearn.preprocessing import MinMaxScaler\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Dropout, LSTM\n", "from dotenv import dotenv_values\n", "from polygon import RESTClient\n" ] }, { "cell_type": "code", "source": [ "# geting poligon api key\n", "config = dotenv_values(\"env_stock_predictor\")\n", "POLYGON_API_KEY = config['POLYGON_API_KEY']" ], "metadata": { "id": "MwIQIS6GeSJr" }, "execution_count": 18, "outputs": [] }, { "cell_type": "code", "source": [ "# Select a company for now\n", "ticker = 'AAPL'\n", "\n", "data_sources = {'pandas': 'pandas-datareader',\n", " 'polygon':'polygon'}\n", "source = data_sources['polygon']\n", "# source = data_sources['pandas']\n", "\n", "start = dt.datetime(2013,1,1)\n", "end = dt.date.today()" ], "metadata": { "id": "O6dtJpJwS5Eg" }, "execution_count": 19, "outputs": [] }, { "cell_type": "code", "source": [ "if source == data_sources['pandas']:\n", " yfin.pdr_override()\n", " data = web.data.get_data_yahoo(ticker, start, end)\n", "elif source == data_sources['polygon']:\n", " # using the poligon API\n", " poligon_client = RESTClient(api_key=POLYGON_API_KEY)\n", " # bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=\"2023-01-09\", to=\"2023-01-15\")\n", " # bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=start, to=end)\n", " bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"hour\", from_=dt.datetime.now() - dt.timedelta(days=5), to=dt.datetime.now())\n", " print(len(bars))\n", " for bar in bars[-2:]:\n", " print(type(bar))\n", " print(bar)\n", " print(bar.timestamp)\n", " print(dt.date.fromtimestamp(bar.timestamp/1000))\n", " print(dt.datetime.fromtimestamp(bar.timestamp/1000))" ], "metadata": { "id": "LwPyk8Uh-Zz_" }, "execution_count": 36, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IX_o3NTggblq", "outputId": "27d4d43b-e063-4651-db16-f5ecf819860b" }, "execution_count": 37, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "41\n", "\n", "Agg(open=165.57, high=165.68, low=165.53, close=165.64, volume=11712, vwap=165.6067, timestamp=1680645600000, transactions=258, otc=None)\n", "1680645600000\n", "2023-04-04\n", "2023-04-04 22:00:00\n", "\n", "Agg(open=165.6, high=165.85, low=165.6, close=165.79, volume=28951, vwap=165.7385, timestamp=1680649200000, transactions=533, otc=None)\n", "1680649200000\n", "2023-04-04\n", "2023-04-04 23:00:00\n" ] } ] }, { "cell_type": "code", "source": [ "print(type(spy))\n", "print(spy.head())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 187 }, "id": "EMoXLT5vd8Ex", "outputId": "74416af4-da65-4d12-ed3a-27806b8f0965" }, "execution_count": 10, "outputs": [ { "output_type": "error", "ename": "NameError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'spy' is not defined" ] } ] }, { "cell_type": "code", "source": [ "df = web.DataReader('GE', 'yahoo', start='2019-09-10', end='2019-10-09')\n", "print(start)\n", "print(end)" ], "metadata": { "id": "THGxnQbSUgvw" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "scaler = MinMaxScaler(feature_range=(0,1))\n", "scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1))\n", "prediction_days = 60\n", "\n", "x_train = []\n", "y_train = []\n", "\n", "for x in range()" ], "metadata": { "id": "ccV59ukvXaNF" }, "execution_count": null, "outputs": [] } ] }