jskinner215's picture
Update app.py
2734d11
raw
history blame
9.4 kB
from copy import deepcopy
from langchain.callbacks import StreamlitCallbackHandler
import streamlit as st
import pandas as pd
from io import StringIO
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
import numpy as np
import weaviate
from weaviate.embedded import EmbeddedOptions
from weaviate import Client
from weaviate.util import generate_uuid5
import logging
# Initialize session state attributes
if "debug" not in st.session_state:
st.session_state.debug = False
st_callback = StreamlitCallbackHandler(st.container())
class StreamlitCallbackHandler(logging.Handler):
def emit(self, record):
log_entry = self.format(record)
st.write(log_entry)
# Initialize TAPAS model and tokenizer
#tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
#model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
# Initialize Weaviate client for the embedded instance
#client = weaviate.Client(
# embedded_options=EmbeddedOptions()
#)
# Global list to store debugging information
DEBUG_LOGS = []
def log_debug_info(message):
if st.session_state.debug:
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Check if StreamlitCallbackHandler is already added to avoid duplicate logs
if not any(isinstance(handler, StreamlitCallbackHandler) for handler in logger.handlers):
handler = StreamlitCallbackHandler()
logger.addHandler(handler)
logger.debug(message)
# Function to check if a class already exists in Weaviate
#def class_exists(class_name):
# try:
# client.schema.get_class(class_name)
# return True
# except:
# return False
#def map_dtype_to_weaviate(dtype):
## """
# Map pandas data types to Weaviate data types.
# """
# if "int" in str(dtype):
# return "int"
# elif "float" in str(dtype):
# return "number"
# elif "bool" in str(dtype):
# return "boolean"
# else:
# return "string"
# def ingest_data_to_weaviate(dataframe, class_name, class_description):
# # Create class schema
# class_schema = {
# "class": class_name,
# "description": class_description,
# "properties": [] # Start with an empty properties list
# }
#
# # Try to create the class without properties first
# try:
# client.schema.create({"classes": [class_schema]})
# except weaviate.exceptions.SchemaValidationException:
# # Class might already exist, so we can continue
# pass#
# # Now, let's add properties to the class
# for column_name, data_type in zip(dataframe.columns, dataframe.dtypes):
# property_schema = {
# "name": column_name,
# "description": f"Property for {column_name}",
# "dataType": [map_dtype_to_weaviate(data_type)]
# }
# try:
# client.schema.property.create(class_name, property_schema)
# except weaviate.exceptions.SchemaValidationException:
# # Property might already exist, so we can continue
# pass
#
# # Ingest data
# for index, row in dataframe.iterrows():
# obj = {
# "class": class_name,
# "id": str(index),
# "properties": row.to_dict()
# }
# client.data_object.create(obj)
# Log data ingestion
# log_debug_info(f"Data ingested into Weaviate for class: {class_name}")
def query_weaviate(question):
# This is a basic example; adapt the query based on the question
results = client.query.get(class_name).with_near_text(question).do()
return results
def ask_llm_chunk(chunk, questions):
chunk = chunk.astype(str)
try:
inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
except Exception as e:
log_debug_info(f"Tokenization error: {e}")
st.write(f"An error occurred: {e}")
return ["Error occurred while tokenizing"] * len(questions)
if inputs["input_ids"].shape[1] > 512:
log_debug_info("Token limit exceeded for chunk")
st.warning("Token limit exceeded for chunk")
return ["Token limit exceeded for chunk"] * len(questions)
outputs = model(**inputs)
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
inputs,
outputs.logits.detach(),
outputs.logits_aggregation.detach()
)
answers = []
for coordinates in predicted_answer_coordinates:
if len(coordinates) == 1:
row, col = coordinates[0]
try:
value = chunk.iloc[row, col]
log_debug_info(f"Accessed value for row {row}, col {col}: {value}")
answers.append(value)
except Exception as e:
log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
st.write(f"An error occurred: {e}")
else:
cell_values = []
for coordinate in coordinates:
row, col = coordinate
try:
value = chunk.iloc[row, col]
cell_values.append(value)
except Exception as e:
log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
st.write(f"An error occurred: {e}")
answers.append(", ".join(map(str, cell_values)))
return answers
MAX_ROWS_PER_CHUNK = 200
def summarize_map_reduce(data, questions):
dataframe = pd.read_csv(StringIO(data))
num_chunks = len(dataframe) // MAX_ROWS_PER_CHUNK + 1
dataframe_chunks = [deepcopy(chunk) for chunk in np.array_split(dataframe, num_chunks)]
all_answers = []
for chunk in dataframe_chunks:
chunk_answers = ask_llm_chunk(chunk, questions)
all_answers.extend(chunk_answers)
return all_answers
def get_class_schema(class_name):
"""
Get the schema for a specific class.
"""
all_classes = client.schema.get()["classes"]
for cls in all_classes:
if cls["class"] == class_name:
return cls
return None
st.title("TAPAS Table Question Answering with Weaviate")
# Get existing classes from Weaviate
existing_classes = [cls["class"] for cls in client.schema.get()["classes"]]
class_options = existing_classes + ["New Class"]
selected_class = st.selectbox("Select a class or create a new one:", class_options)
if selected_class == "New Class":
class_name = st.text_input("Enter the new class name:")
class_description = st.text_input("Enter a description for the class:")
else:
class_name = selected_class
class_description = "" # We can fetch the description from Weaviate if needed
# Upload CSV data
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
# Display the schema if an existing class is selected
class_schema = None # Initialize class_schema to None
if selected_class != "New Class":
st.write(f"Schema for {selected_class}:")
class_schema = get_class_schema(selected_class)
if class_schema:
properties = class_schema["properties"]
schema_df = pd.DataFrame(properties)
st.table(schema_df[["name", "dataType"]]) # Display only the name and dataType columns
# Before ingesting data into Weaviate, check if CSV columns match the class schema
if csv_file is not None:
data = csv_file.read().decode("utf-8")
dataframe = pd.read_csv(StringIO(data))
# Log CSV upload information
log_debug_info(f"CSV uploaded with shape: {dataframe.shape}")
# Display the uploaded CSV data
st.write("Uploaded CSV Data:")
st.write(dataframe)
# Check if columns match
if class_schema: # Ensure class_schema is not None
schema_columns = [prop["name"] for prop in class_schema["properties"]]
if set(dataframe.columns) != set(schema_columns):
st.error("The columns in the uploaded CSV do not match the schema of the selected class. Please check and upload the correct CSV or create a new class.")
else:
# Ingest data into Weaviate
ingest_data_to_weaviate(dataframe, class_name, class_description)
# Input for questions
questions = st.text_area("Enter your questions (one per line)")
questions = questions.split("\n") # split questions by line
questions = [q for q in questions if q] # remove empty strings
if st.button("Submit"):
if data and questions:
answers = summarize_map_reduce(data, questions)
st.write("Answers:")
for q, a in zip(questions, answers):
st.write(f"Question: {q}")
st.write(f"Answer: {a}")
# Display debugging information
if st.checkbox("Show Debugging Information"):
st.write("Debugging Logs:")
for log in DEBUG_LOGS:
st.write(log)
# Add Ctrl+Enter functionality for submitting the questions
st.markdown("""
<script>
document.addEventListener("DOMContentLoaded", function(event) {
document.addEventListener("keydown", function(event) {
if (event.ctrlKey && event.key === "Enter") {
document.querySelector(".stButton button").click();
}
});
});
</script>
""", unsafe_allow_html=True)