jskinner215 commited on
Commit
0e0ce94
·
1 Parent(s): ed7f9aa

Update tapas_utils.py

Browse files
Files changed (1) hide show
  1. tapas_utils.py +59 -2
tapas_utils.py CHANGED
@@ -7,8 +7,65 @@ def initialize_tapas():
7
  model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
8
  return tokenizer, model
9
 
10
- def ask_llm_chunk(tokenizer, model, chunk, questions):
11
  # ... [same as in your code]
12
 
13
- def summarize_map_reduce(tokenizer, model, data, questions):
14
  # ... [same as in your code]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
8
  return tokenizer, model
9
 
10
+
11
  # ... [same as in your code]
12
 
13
+
14
  # ... [same as in your code]
15
+ def ask_llm_chunk(tokenizer, model, chunk, questions):
16
+ chunk = chunk.astype(str)
17
+ try:
18
+ inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
19
+ except Exception as e:
20
+ log_debug_info(f"Tokenization error: {e}")
21
+ st.write(f"An error occurred: {e}")
22
+ return ["Error occurred while tokenizing"] * len(questions)
23
+
24
+ if inputs["input_ids"].shape[1] > 512:
25
+ log_debug_info("Token limit exceeded for chunk")
26
+ st.warning("Token limit exceeded for chunk")
27
+ return ["Token limit exceeded for chunk"] * len(questions)
28
+
29
+ outputs = model(**inputs)
30
+ predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
31
+ inputs,
32
+ outputs.logits.detach(),
33
+ outputs.logits_aggregation.detach()
34
+ )
35
+
36
+ answers = []
37
+ for coordinates in predicted_answer_coordinates:
38
+ if len(coordinates) == 1:
39
+ row, col = coordinates[0]
40
+ try:
41
+ value = chunk.iloc[row, col]
42
+ log_debug_info(f"Accessed value for row {row}, col {col}: {value}")
43
+ answers.append(value)
44
+ except Exception as e:
45
+ log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
46
+ st.write(f"An error occurred: {e}")
47
+ else:
48
+ cell_values = []
49
+ for coordinate in coordinates:
50
+ row, col = coordinate
51
+ try:
52
+ value = chunk.iloc[row, col]
53
+ cell_values.append(value)
54
+ except Exception as e:
55
+ log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
56
+ st.write(f"An error occurred: {e}")
57
+ answers.append(", ".join(map(str, cell_values)))
58
+
59
+ return answers
60
+
61
+ MAX_ROWS_PER_CHUNK = 200
62
+
63
+ def summarize_map_reduce(tokenizer, model, data, questions):
64
+ dataframe = pd.read_csv(StringIO(data))
65
+ num_chunks = len(dataframe) // MAX_ROWS_PER_CHUNK + 1
66
+ dataframe_chunks = [deepcopy(chunk) for chunk in np.array_split(dataframe, num_chunks)]
67
+ all_answers = []
68
+ for chunk in dataframe_chunks:
69
+ chunk_answers = ask_llm_chunk(chunk, questions)
70
+ all_answers.extend(chunk_answers)
71
+ return all_answers