Spaces:
Build error
added embedded weaviate client and ingest_data + query_weaviate functions
Browse filesfrom copy import deepcopy
import streamlit as st
import pandas as pd
from io import StringIO
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
import numpy as np
import weaviate
# Initialize TAPAS model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
# Initialize Weaviate client for the embedded instance
client = weaviate.Client("http://localhost:8080")
# Function to ingest data into Weaviate
def ingest_data_to_weaviate(dataframe):
for index, row in dataframe.iterrows():
obj = {
"class": "YourClassName",
"id": str(index),
"properties": row.to_dict()
}
client.data_object.create(obj)
# Function to query data from Weaviate
def query_weaviate(question):
# This is a basic example; adapt the query based on the question
results = client.query.get('YourClassName').with_near_text(question).do()
return results
# Existing function to ask TAPAS
def ask_llm_chunk(chunk, questions):
# ... [rest of the function remains unchanged]
# Existing function to handle large datasets
def summarize_map_reduce(data, questions):
# ... [rest of the function remains unchanged]
st.title("TAPAS Table Question Answering with Weaviate")
# Upload CSV data
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
if csv_file is not None:
data = csv_file.read().decode("utf-8")
dataframe = pd.read_csv(StringIO(data))
# Ingest data into Weaviate
ingest_data_to_weaviate(dataframe)
st.write("CSV Data Preview:")
st.write(dataframe.head())
# Input for questions
questions = st.text_area("Enter your questions (one per line)")
questions = questions.split("\n") # split questions by line
questions = [q for q in questions if q] # remove empty strings
if st.button("Submit"):
if data and questions:
# Query Weaviate to get relevant data
relevant_data = query_weaviate(questions[0]) # Example: using the first question
# Convert the relevant data to a DataFrame (you might need to adjust this based on the Weaviate response format)
relevant_df = pd.DataFrame(relevant_data)
# Pass the relevant data to TAPAS
answers = summarize_map_reduce(relevant_df, questions)
st.write("Answers:")
for q, a in zip(questions, answers):
st.write(f"Question: {q}")
st.write(f"Answer: {a}")
# Add Ctrl+Enter functionality for submitting the questions
st.markdown("""
<script>
document.addEventListener("DOMContentLoaded", function(event) {
document.addEventListener("keydown", function(event) {
if (event.ctrlKey && event.key === "Enter") {
document.querySelector(".stButton button").click();
}
});
});
</script>
""", unsafe_allow_html=True)
@@ -1,15 +1,34 @@
|
|
1 |
from copy import deepcopy
|
2 |
-
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
from io import StringIO
|
6 |
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
# Initialize TAPAS model and tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
|
11 |
model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def ask_llm_chunk(chunk, questions):
|
14 |
chunk = chunk.astype(str)
|
15 |
try:
|
@@ -67,14 +86,19 @@ def summarize_map_reduce(data, questions):
|
|
67 |
all_answers.extend(chunk_answers)
|
68 |
return all_answers
|
69 |
|
70 |
-
st.title("TAPAS Table Question Answering")
|
71 |
|
72 |
# Upload CSV data
|
73 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
74 |
if csv_file is not None:
|
75 |
data = csv_file.read().decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
76 |
st.write("CSV Data Preview:")
|
77 |
-
st.write(
|
78 |
|
79 |
# Input for questions
|
80 |
questions = st.text_area("Enter your questions (one per line)")
|
@@ -83,7 +107,14 @@ if csv_file is not None:
|
|
83 |
|
84 |
if st.button("Submit"):
|
85 |
if data and questions:
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
st.write("Answers:")
|
88 |
for q, a in zip(questions, answers):
|
89 |
st.write(f"Question: {q}")
|
@@ -100,4 +131,4 @@ st.markdown("""
|
|
100 |
});
|
101 |
});
|
102 |
</script>
|
103 |
-
""", unsafe_allow_html=True)
|
|
|
1 |
from copy import deepcopy
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
from io import StringIO
|
5 |
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
|
6 |
import numpy as np
|
7 |
+
import weaviate
|
8 |
|
9 |
# Initialize TAPAS model and tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
|
11 |
model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
12 |
|
13 |
+
# Initialize Weaviate client for the embedded instance
|
14 |
+
client = weaviate.Client("http://localhost:8080")
|
15 |
+
|
16 |
+
# Function to ingest data into Weaviate
|
17 |
+
def ingest_data_to_weaviate(dataframe):
|
18 |
+
for index, row in dataframe.iterrows():
|
19 |
+
obj = {
|
20 |
+
"class": "YourClassName",
|
21 |
+
"id": str(index),
|
22 |
+
"properties": row.to_dict()
|
23 |
+
}
|
24 |
+
client.data_object.create(obj)
|
25 |
+
|
26 |
+
# Function to query data from Weaviate
|
27 |
+
def query_weaviate(question):
|
28 |
+
# This is a basic example; adapt the query based on the question
|
29 |
+
results = client.query.get('YourClassName').with_near_text(question).do()
|
30 |
+
return results
|
31 |
+
|
32 |
def ask_llm_chunk(chunk, questions):
|
33 |
chunk = chunk.astype(str)
|
34 |
try:
|
|
|
86 |
all_answers.extend(chunk_answers)
|
87 |
return all_answers
|
88 |
|
89 |
+
st.title("TAPAS Table Question Answering with Weaviate")
|
90 |
|
91 |
# Upload CSV data
|
92 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
93 |
if csv_file is not None:
|
94 |
data = csv_file.read().decode("utf-8")
|
95 |
+
dataframe = pd.read_csv(StringIO(data))
|
96 |
+
|
97 |
+
# Ingest data into Weaviate
|
98 |
+
ingest_data_to_weaviate(dataframe)
|
99 |
+
|
100 |
st.write("CSV Data Preview:")
|
101 |
+
st.write(dataframe.head())
|
102 |
|
103 |
# Input for questions
|
104 |
questions = st.text_area("Enter your questions (one per line)")
|
|
|
107 |
|
108 |
if st.button("Submit"):
|
109 |
if data and questions:
|
110 |
+
# Query Weaviate to get relevant data
|
111 |
+
relevant_data = query_weaviate(questions[0]) # Example: using the first question
|
112 |
+
# Convert the relevant data to a DataFrame (you might need to adjust this based on the Weaviate response format)
|
113 |
+
relevant_df = pd.DataFrame(relevant_data)
|
114 |
+
|
115 |
+
# Pass the relevant data to TAPAS
|
116 |
+
answers = summarize_map_reduce(relevant_df, questions)
|
117 |
+
|
118 |
st.write("Answers:")
|
119 |
for q, a in zip(questions, answers):
|
120 |
st.write(f"Question: {q}")
|
|
|
131 |
});
|
132 |
});
|
133 |
</script>
|
134 |
+
""", unsafe_allow_html=True)
|