Spaces:
Build error
Build error
jskinner215
commited on
Commit
·
3ae17c8
1
Parent(s):
f419ec9
Update weaviate_utils.py
Browse files- weaviate_utils.py +19 -23
weaviate_utils.py
CHANGED
@@ -22,37 +22,33 @@ def map_dtype_to_weaviate(dtype):
|
|
22 |
else:
|
23 |
return "string"
|
24 |
|
25 |
-
def
|
26 |
-
# Create class schema
|
27 |
class_schema = {
|
28 |
"class": class_name,
|
29 |
"description": class_description,
|
30 |
-
"properties": []
|
31 |
}
|
32 |
-
|
33 |
-
# Try to create the class without properties first
|
34 |
try:
|
35 |
client.schema.create({"classes": [class_schema]})
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"description": f"Property for {column_name}",
|
45 |
-
"dataType": [map_dtype_to_weaviate(data_type)]
|
46 |
-
}
|
47 |
-
try:
|
48 |
-
client.schema.property.create(class_name, property_schema)
|
49 |
-
except weaviate.exceptions.SchemaValidationException:
|
50 |
-
# Property might already exist, so we can continue
|
51 |
-
pass
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def get_class_schema(client, class_name):
|
58 |
try:
|
|
|
22 |
else:
|
23 |
return "string"
|
24 |
|
25 |
+
def create_new_class_schema(client, class_name, class_description):
|
|
|
26 |
class_schema = {
|
27 |
"class": class_name,
|
28 |
"description": class_description,
|
29 |
+
"properties": []
|
30 |
}
|
|
|
|
|
31 |
try:
|
32 |
client.schema.create({"classes": [class_schema]})
|
33 |
+
st.success(f"Class {class_name} created successfully!")
|
34 |
+
except Exception as e:
|
35 |
+
st.error(f"Error creating class: {e}")
|
36 |
|
37 |
+
def ingest_data_to_weaviate(client, csv_file, selected_class):
|
38 |
+
# Convert CSV to DataFrame
|
39 |
+
data = csv_file.read().decode("utf-8")
|
40 |
+
dataframe = pd.read_csv(StringIO(data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Check if columns match the selected class schema
|
43 |
+
class_schema = get_class_schema(client, selected_class)
|
44 |
+
if class_schema:
|
45 |
+
schema_columns = [prop["name"] for prop in class_schema["properties"]]
|
46 |
+
if set(dataframe.columns) == set(schema_columns):
|
47 |
+
data = dataframe.to_dict(orient="records")
|
48 |
+
client.data_object.create(data, selected_class)
|
49 |
+
st.success("Data ingested successfully!")
|
50 |
+
else:
|
51 |
+
st.error("The columns in the uploaded CSV do not match the schema of the selected class.")
|
52 |
|
53 |
def get_class_schema(client, class_name):
|
54 |
try:
|