Spaces:
Build error
Build error
Commit
·
d304ae4
1
Parent(s):
862e59b
Update app.py
Browse files
app.py
CHANGED
@@ -6,48 +6,19 @@ from weaviate_utils import *
|
|
6 |
from tapas_utils import *
|
7 |
from ui_utils import *
|
8 |
|
9 |
-
# ...
|
10 |
-
selected_class = ui_utils.display_class_dropdown(client)
|
11 |
-
ui_utils.handle_new_class_selection(selected_class)
|
12 |
-
ui_utils.csv_upload_and_ingestion(selected_class)
|
13 |
-
ui_utils.display_query_input()
|
14 |
-
# ...
|
15 |
-
|
16 |
# Initialize Weaviate client
|
17 |
client = initialize_weaviate_client()
|
18 |
|
19 |
# Initialize TAPAS
|
20 |
tokenizer, model = initialize_tapas()
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
selected_class = display_class_dropdown(client)
|
25 |
-
handle_new_class_selection()
|
26 |
-
csv_upload_and_ingestion()
|
27 |
-
display_query_input()
|
28 |
-
|
29 |
-
# Initialize session state attributes
|
30 |
-
if "debug" not in st.session_state:
|
31 |
-
st.session_state.debug = False
|
32 |
-
|
33 |
-
st_callback = StreamlitCallbackHandler(st.container())
|
34 |
|
35 |
class StreamlitCallbackHandler(logging.Handler):
|
36 |
def emit(self, record):
|
37 |
log_entry = self.format(record)
|
38 |
st.write(log_entry)
|
39 |
-
|
40 |
-
# Initialize TAPAS model and tokenizer
|
41 |
-
#tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
|
42 |
-
#model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
43 |
-
|
44 |
-
# Initialize Weaviate client for the embedded instance
|
45 |
-
#client = weaviate.Client(
|
46 |
-
# embedded_options=EmbeddedOptions()
|
47 |
-
#)
|
48 |
-
|
49 |
-
# Global list to store debugging information
|
50 |
-
DEBUG_LOGS = []
|
51 |
|
52 |
def log_debug_info(message):
|
53 |
if st.session_state.debug:
|
@@ -61,140 +32,16 @@ def log_debug_info(message):
|
|
61 |
|
62 |
logger.debug(message)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
# client.schema.get_class(class_name)
|
69 |
-
# return True
|
70 |
-
# except:
|
71 |
-
# return False
|
72 |
-
|
73 |
-
#def map_dtype_to_weaviate(dtype):
|
74 |
-
## """
|
75 |
-
# Map pandas data types to Weaviate data types.
|
76 |
-
# """
|
77 |
-
# if "int" in str(dtype):
|
78 |
-
# return "int"
|
79 |
-
# elif "float" in str(dtype):
|
80 |
-
# return "number"
|
81 |
-
# elif "bool" in str(dtype):
|
82 |
-
# return "boolean"
|
83 |
-
# else:
|
84 |
-
# return "string"
|
85 |
-
|
86 |
-
# def ingest_data_to_weaviate(dataframe, class_name, class_description):
|
87 |
-
# # Create class schema
|
88 |
-
# class_schema = {
|
89 |
-
# "class": class_name,
|
90 |
-
# "description": class_description,
|
91 |
-
# "properties": [] # Start with an empty properties list
|
92 |
-
# }
|
93 |
-
#
|
94 |
-
# # Try to create the class without properties first
|
95 |
-
# try:
|
96 |
-
# client.schema.create({"classes": [class_schema]})
|
97 |
-
# except weaviate.exceptions.SchemaValidationException:
|
98 |
-
# # Class might already exist, so we can continue
|
99 |
-
# pass#
|
100 |
-
|
101 |
-
# # Now, let's add properties to the class
|
102 |
-
# for column_name, data_type in zip(dataframe.columns, dataframe.dtypes):
|
103 |
-
# property_schema = {
|
104 |
-
# "name": column_name,
|
105 |
-
# "description": f"Property for {column_name}",
|
106 |
-
# "dataType": [map_dtype_to_weaviate(data_type)]
|
107 |
-
# }
|
108 |
-
# try:
|
109 |
-
# client.schema.property.create(class_name, property_schema)
|
110 |
-
# except weaviate.exceptions.SchemaValidationException:
|
111 |
-
# # Property might already exist, so we can continue
|
112 |
-
# pass
|
113 |
-
#
|
114 |
-
# # Ingest data
|
115 |
-
# for index, row in dataframe.iterrows():
|
116 |
-
# obj = {
|
117 |
-
# "class": class_name,
|
118 |
-
# "id": str(index),
|
119 |
-
# "properties": row.to_dict()
|
120 |
-
# }
|
121 |
-
# client.data_object.create(obj)
|
122 |
-
|
123 |
-
# Log data ingestion
|
124 |
-
# log_debug_info(f"Data ingested into Weaviate for class: {class_name}")
|
125 |
-
|
126 |
-
def query_weaviate(question):
|
127 |
-
# This is a basic example; adapt the query based on the question
|
128 |
-
results = client.query.get(class_name).with_near_text(question).do()
|
129 |
-
return results
|
130 |
-
|
131 |
-
#def ask_llm_chunk(chunk, questions):
|
132 |
-
# chunk = chunk.astype(str)
|
133 |
-
# try:
|
134 |
-
# inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
|
135 |
-
# except Exception as e:
|
136 |
-
# log_debug_info(f"Tokenization error: {e}")
|
137 |
-
# st.write(f"An error occurred: {e}")
|
138 |
-
# return ["Error occurred while tokenizing"] * len(questions)
|
139 |
-
#
|
140 |
-
## if inputs["input_ids"].shape[1] > 512:
|
141 |
-
# log_debug_info("Token limit exceeded for chunk")
|
142 |
-
# st.warning("Token limit exceeded for chunk")
|
143 |
-
# return ["Token limit exceeded for chunk"] * len(questions)#
|
144 |
-
#
|
145 |
-
# outputs = model(**inputs)
|
146 |
-
# predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
147 |
-
# inputs,
|
148 |
-
# outputs.logits.detach(),
|
149 |
-
# outputs.logits_aggregation.detach()
|
150 |
-
# )
|
151 |
-
#
|
152 |
-
# answers = []
|
153 |
-
# for coordinates in predicted_answer_coordinates:
|
154 |
-
# if len(coordinates) == 1:
|
155 |
-
# row, col = coordinates[0]
|
156 |
-
# try:
|
157 |
-
# value = chunk.iloc[row, col]
|
158 |
-
# log_debug_info(f"Accessed value for row {row}, col {col}: {value}")
|
159 |
-
# answers.append(value)
|
160 |
-
# except Exception as e:
|
161 |
-
# log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
|
162 |
-
# st.write(f"An error occurred: {e}")
|
163 |
-
# else:
|
164 |
-
# cell_values = []
|
165 |
-
# for coordinate in coordinates:
|
166 |
-
# row, col = coordinate
|
167 |
-
# try:
|
168 |
-
# value = chunk.iloc[row, col]
|
169 |
-
# cell_values.append(value)
|
170 |
-
# except Exception as e:
|
171 |
-
# log_debug_info(f"Error accessing value for row {row}, col {col}: {e}")
|
172 |
-
# st.write(f"An error occurred: {e}")
|
173 |
-
# answers.append(", ".join(map(str, cell_values)))
|
174 |
-
#
|
175 |
-
# return answers
|
176 |
-
|
177 |
-
# MAX_ROWS_PER_CHUNK = 200
|
178 |
-
|
179 |
-
# def summarize_map_reduce(data, questions):
|
180 |
-
# dataframe = pd.read_csv(StringIO(data))
|
181 |
-
# num_chunks = len(dataframe) // MAX_ROWS_PER_CHUNK + 1
|
182 |
-
# dataframe_chunks = [deepcopy(chunk) for chunk in np.array_split(dataframe, num_chunks)]
|
183 |
-
# all_answers = []
|
184 |
-
# for chunk in dataframe_chunks:
|
185 |
-
# chunk_answers = ask_llm_chunk(chunk, questions)
|
186 |
-
# all_answers.extend(chunk_answers)
|
187 |
-
# return all_answers
|
188 |
-
|
189 |
-
def get_class_schema(class_name):
|
190 |
-
"""
|
191 |
-
Get the schema for a specific class.
|
192 |
-
"""
|
193 |
-
all_classes = client.schema.get()["classes"]
|
194 |
-
for cls in all_classes:
|
195 |
-
if cls["class"] == class_name:
|
196 |
-
return cls
|
197 |
-
return None
|
198 |
|
199 |
st.title("TAPAS Table Question Answering with Weaviate")
|
200 |
|
@@ -217,7 +64,7 @@ csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
217 |
class_schema = None # Initialize class_schema to None
|
218 |
if selected_class != "New Class":
|
219 |
st.write(f"Schema for {selected_class}:")
|
220 |
-
class_schema = get_class_schema(selected_class)
|
221 |
if class_schema:
|
222 |
properties = class_schema["properties"]
|
223 |
schema_df = pd.DataFrame(properties)
|
@@ -242,7 +89,7 @@ if csv_file is not None:
|
|
242 |
st.error("The columns in the uploaded CSV do not match the schema of the selected class. Please check and upload the correct CSV or create a new class.")
|
243 |
else:
|
244 |
# Ingest data into Weaviate
|
245 |
-
ingest_data_to_weaviate(dataframe, class_name, class_description)
|
246 |
|
247 |
# Input for questions
|
248 |
questions = st.text_area("Enter your questions (one per line)")
|
@@ -251,7 +98,7 @@ if csv_file is not None:
|
|
251 |
|
252 |
if st.button("Submit"):
|
253 |
if data and questions:
|
254 |
-
answers = summarize_map_reduce(data, questions)
|
255 |
st.write("Answers:")
|
256 |
for q, a in zip(questions, answers):
|
257 |
st.write(f"Question: {q}")
|
@@ -274,4 +121,4 @@ st.markdown("""
|
|
274 |
});
|
275 |
});
|
276 |
</script>
|
277 |
-
""", unsafe_allow_html=True)
|
|
|
6 |
from tapas_utils import *
|
7 |
from ui_utils import *
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Initialize Weaviate client
|
10 |
client = initialize_weaviate_client()
|
11 |
|
12 |
# Initialize TAPAS
|
13 |
tokenizer, model = initialize_tapas()
|
14 |
|
15 |
+
# Global list to store debugging information
|
16 |
+
DEBUG_LOGS = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class StreamlitCallbackHandler(logging.Handler):
|
19 |
def emit(self, record):
|
20 |
log_entry = self.format(record)
|
21 |
st.write(log_entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def log_debug_info(message):
|
24 |
if st.session_state.debug:
|
|
|
32 |
|
33 |
logger.debug(message)
|
34 |
|
35 |
+
# UI components
|
36 |
+
ui_utils.display_initial_buttons()
|
37 |
+
selected_class = ui_utils.display_class_dropdown(client)
|
38 |
+
ui_utils.handle_new_class_selection(client, selected_class)
|
39 |
+
ui_utils.csv_upload_and_ingestion(client, selected_class)
|
40 |
+
ui_utils.display_query_input()
|
41 |
|
42 |
+
# Initialize session state attributes
|
43 |
+
if "debug" not in st.session_state:
|
44 |
+
st.session_state.debug = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
st.title("TAPAS Table Question Answering with Weaviate")
|
47 |
|
|
|
64 |
class_schema = None # Initialize class_schema to None
|
65 |
if selected_class != "New Class":
|
66 |
st.write(f"Schema for {selected_class}:")
|
67 |
+
class_schema = get_class_schema(client, selected_class)
|
68 |
if class_schema:
|
69 |
properties = class_schema["properties"]
|
70 |
schema_df = pd.DataFrame(properties)
|
|
|
89 |
st.error("The columns in the uploaded CSV do not match the schema of the selected class. Please check and upload the correct CSV or create a new class.")
|
90 |
else:
|
91 |
# Ingest data into Weaviate
|
92 |
+
ingest_data_to_weaviate(client, dataframe, class_name, class_description)
|
93 |
|
94 |
# Input for questions
|
95 |
questions = st.text_area("Enter your questions (one per line)")
|
|
|
98 |
|
99 |
if st.button("Submit"):
|
100 |
if data and questions:
|
101 |
+
answers = summarize_map_reduce(tokenizer, model, data, questions)
|
102 |
st.write("Answers:")
|
103 |
for q, a in zip(questions, answers):
|
104 |
st.write(f"Question: {q}")
|
|
|
121 |
});
|
122 |
});
|
123 |
</script>
|
124 |
+
""", unsafe_allow_html=True)
|