import streamlit as st import weaviate_utils import tapas_utils def display_initial_buttons(): if "upload_flow" not in st.session_state: st.session_state.upload_flow = False if "query_flow" not in st.session_state: st.session_state.query_flow = False if st.button("Upload new CSV"): st.session_state.upload_flow = True st.session_state.query_flow = False if st.button("Query existing data"): st.session_state.query_flow = True st.session_state.upload_flow = False def display_class_dropdown(client): if st.session_state.upload_flow: existing_classes = [cls["class"] for cls in client.schema.get()["classes"]] class_options = existing_classes + ["New Class"] return st.selectbox("Select a class or create a new one:", class_options, key="class_selector_upload") elif st.session_state.query_flow: existing_classes = [cls["class"] for cls in client.schema.get()["classes"]] class_options = existing_classes + ["Query all data"] selected_option = st.selectbox("Select a class or query all data:", class_options, key="class_selector_query") if selected_option == "Query all data": # If "Query all data" is selected, return the first class as a default for now # You can modify this behavior as needed return existing_classes[0] else: return selected_option def handle_new_class_selection(client, selected_class): if selected_class == "New Class": class_name = st.text_input("Enter the new class name:") class_description = st.text_input("Enter a description for the class:") if class_name and class_description: if st.button("Create Vector DB Class"): # Call function to create new class schema in Weaviate weaviate_utils.create_new_class_schema(client, class_name, class_description) def csv_upload_and_ingestion(client, selected_class): csv_file = st.file_uploader("Upload a CSV file", type=["csv"], key="csv_uploader") if csv_file: if st.button("Confirm CSV upload"): # Call function to ingest CSV data into Weaviate dataframe = weaviate_utils.ingest_data_to_weaviate(client, csv_file, selected_class) # Updated this line if dataframe is not None: # Check if ingestion was successful # Display a preview of the ingested data st.write(f"Your CSV was successfully integrated into the vector database under the class '{selected_class}'") st.write(dataframe.head()) # Display the first few rows of the dataframe as a preview st.session_state.csv_uploaded = True # Set session state variable def display_query_input(client, selected_class, tokenizer, model): # Added parameters question = st.text_input("Enter your question:", key="query_input") # Display the "Submit Query" button if CSV has been uploaded if st.session_state.get("csv_uploaded", False): if st.button("Submit Query"): if question: # Check if the question input is not empty # Call function to query TAPAS with selected data and entered question query_tapas_with_weaviate_data(client, selected_class, question, tokenizer, model) else: st.warning("Please provide a text query in the 'Enter your question:' input box to proceed.") st.write(f"Selected class type: {type(selected_class)}, Value: {selected_class}") def query_tapas_with_weaviate_data(client, selected_class, question, tokenizer, model): # 1. Perform hybrid search data = weaviate_utils.hybrid_search_weaviate(client, selected_class, question) st.write(f"Data from Weaviate: {data}") # Logging data from Weaviate # 2. Convert the data to TAPAS format table = weaviate_utils.convert_to_tapas_format(data) st.write(f"Data for TAPAS: {table}") # Logging data from TAPAS Table # 3. Call TAPAS with the table and the question answers = tapas_utils.ask_llm_chunk(tokenizer, model, table, [question]) st.write(f"TAPAS answers: {answers}") # Logging data from TAPAS Answers # Display the answers for answer in answers: st.write(f"Answer: {answer}")