from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering import pandas as pd from io import StringIO from sentence_transformers import SentenceTransformer retriever = SentenceTransformer("deepset/all-mpnet-base-v2-table") def embed_table(table): processed_table = "\n".join([table.to_csv(index=False)]) return retriever.encode(processed_table) def embed_question(question): return retriever.encode(question) def initialize_tapas(): tokenizer = AutoTokenizer.from_pretrained("google/tapas-large-finetuned-wtq") model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq") return tokenizer, model def ask_llm_chunk(tokenizer, model, chunk, questions): chunk = chunk.astype(str) try: inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt") except Exception as e: log_debug_info(f"Tokenization error: {e}") st.write(f"An error occurred: {e}") return ["Error occurred while tokenizing"] * len(questions) if inputs["input_ids"].shape[1] > 512: log_debug_info("Token limit exceeded for chunk") st.warning("Token limit exceeded for chunk") return ["Token limit exceeded for chunk"] * len(questions) outputs = model(**inputs) predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions( inputs, outputs.logits.detach(), outputs.logits_aggregation.detach() ) answers = [] for coordinates in predicted_answer_coordinates: if len(coordinates) == 1: row, col = coordinates[0] try: value = chunk.iloc[row, col] log_debug_info(f"Accessed value for row {row}, col {col}: {value}") answers.append(value) except Exception as e: log_debug_info(f"Error accessing value for row {row}, col {col}: {e}") st.write(f"An error occurred: {e}") else: cell_values = [] for coordinate in coordinates: row, col = coordinate try: value = chunk.iloc[row, col] cell_values.append(value) except Exception as e: log_debug_info(f"Error accessing value for row {row}, col {col}: {e}") st.write(f"An error occurred: {e}") answers.append(", ".join(map(str, cell_values))) return answers MAX_ROWS_PER_CHUNK = 200 def summarize_map_reduce(tokenizer, model, data, questions): dataframe = pd.read_csv(StringIO(data)) num_chunks = len(dataframe) // MAX_ROWS_PER_CHUNK + 1 dataframe_chunks = [deepcopy(chunk) for chunk in np.array_split(dataframe, num_chunks)] all_answers = [] for chunk in dataframe_chunks: chunk_answers = ask_llm_chunk(tokenizer, model, chunk, questions) all_answers.extend(chunk_answers) return all_answers