import torch from peft import PeftModel, PeftConfig import transformers import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BloomForCausalLM, GenerationConfig from transformers.models.opt.modeling_opt import OPTDecoderLayer tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom') BASE_MODEL = "bigscience/bloom-3b" #LORA_WEIGHTS = f"/content/drive/MyDrive/Colab Notebooks/LegalChatbot-{model_name}" LORA_WEIGHTS = f"jslin09/LegalChatbot-bloom-3b" config = PeftConfig.from_pretrained(LORA_WEIGHTS) if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = BloomForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16) elif device == "mps": model = BloomForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = BloomForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" def generate_prompt_tw(instruction, input=None): if input: return f"""以下是描述任務的指令,並與提供進一步上下文的輸入配對。編寫適當完成請求的回應。 ### 指令: {instruction} ### 輸入: {input} ### 回應:""" else: return f"""以下是描述任務的指令。編寫適當完成請求的回應。 ### 指令: {instruction} ### 回應:""" model.eval() if torch.__version__ >= "2": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt_tw(instruction, input) # 中文版的話,函數名稱要改用 generate_prompt_tw inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, do_sample=True, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) # return output.split("### Response:")[1].strip() # 中文版的話,要改為 return output.split("### 回應:")[1].strip() return output.split("### 回應:")[1].strip() gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas." ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), ], outputs=[ gr.components.Textbox( lines=5, label="Output", ) ], title="🌲 🌲 🌲 BLOOM-LoRA-LegalChatbot", description="BLOOM-LoRA-LegalChatbot is a 3B-parameter BLOOM model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and my Legal QA dataset, and makes use of the Huggingface BLOOM implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", ).launch()