File size: 1,308 Bytes
32b0450
59c9e49
 
e713002
59c9e49
 
32b0450
59c9e49
 
02897df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("jslin09/bloom-560m-finetuned-fraud")
model = AutoModelForCausalLM.from_pretrained("jslin09/bloom-560m-finetuned-fraud")

def predict(input, history=[]):
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
    return response, history

with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    state = gr.State([])

    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)

    txt.submit(predict, [txt, state], [chatbot, state])
            
if __name__ == "__main__":
    demo.launch()