Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,947 Bytes
32b0450 dccf4fa d97db75 7fc842c dccf4fa 7fc842c dccf4fa 315025d dccf4fa 2ace237 dccf4fa 1616f44 351b9e5 081ad0c 9bd8a55 dccf4fa 7fc842c 28f307c 48e0bd2 28f307c 315025d dccf4fa 315025d dccf4fa 8c28f7d dccf4fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import AutoModelForCausalLM
from transformers import BloomTokenizerFast
from transformers import pipeline, set_seed
model_name = "bloom-560m"
model = AutoModelForCausalLM.from_pretrained(f"jslin09/{model_name}-finetuned-fraud")
tokenizer = BloomTokenizerFast.from_pretrained(f'bigscience/{model_name}', bos_token = '<s>', eos_token = '</s>')
def generate(prompt):
result_length = len(prompt) + 4
inputs = tokenizer(prompt, return_tensors="pt") # 回傳的張量使用 Pytorch的格式。如果是 Tensorflow 格式的話,則指定為 "tf"。
results = model.generate(inputs["input_ids"],
num_return_sequences=2, # 產生 2 個句子回來。
max_length=result_length,
early_stopping=True,
do_sample=True,
top_k=50,
top_p=0.9
)
return tokenizer.decode(results[0])
examples = [
["闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具,"],
["梅友乾明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,"],
["王大明意圖為自己不法所有,基於竊盜之犯意,"]
]
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center;">Legal Document Drafting</h1>
""")
with gr.Row():
with gr.Column():
result = gr.components.Textbox(lines=7, label="Generative")
prompt = gr.components.Textbox(lines=2, label="Prompt", placeholder=examples[0], visible=False)
gr.Examples(examples, label='Examples', inputs=[prompt])
prompt.change(generate, inputs=[prompt], outputs=[result])
btn = gr.Button("Next sentence")
btn.click(generate, inputs=[result], outputs=[result])
if __name__ == "__main__":
demo.launch() |