File size: 1,007 Bytes
7a18dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import streamlit as st
import pandas as pd
import numpy as np

st.title("Uber pickups in NYC")

DATE_COLUMN = "date/time"
DATA_URL = "https://s3-us-west-2.amazonaws.com/" "streamlit-demo-data/uber-raw-data-sep14.csv.gz"


@st.cache_data
def load_data(nrows):
    data = pd.read_csv(DATA_URL, nrows=nrows)
    data.columns = data.columns.str.lower()
    data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
    return data


data_load_state = st.text("Loading data...")
data = load_data(10000)
data_load_state.text("Done! (using st.cache_data)")

if st.checkbox("Show raw data"):
    st.subheader("Raw data")
    st.write(data)

st.subheader("Number of pickups by hour")
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0, 24))[0]
st.bar_chart(hist_values)

# Some number in the range 0-23
hour_to_filter = st.slider("hour", 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]

st.subheader("Map of all pickups at %s:00" % hour_to_filter)
st.map(filtered_data)