File size: 2,567 Bytes
051e12d
 
 
 
 
e80e35a
051e12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e25142
051e12d
 
0e25142
051e12d
 
 
 
 
 
 
0f65f49
051e12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e25142
 
 
 
051e12d
 
 
 
 
 
 
0f65f49
051e12d
 
 
 
 
 
 
 
 
e80e35a
051e12d
0e25142
051e12d
 
0e25142
051e12d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import pandas as pd
import streamlit as st

from config import DEFAULT_ICON
from shared_page import common_page_config
from streamlit_filter import filter_dataframe


KEEPER_DATA_URL = "../../tests/mocks/2023_keepers.csv"
HEADSHOT_DATA_URL = "../../tests/mocks/2023_player_headshots.csv"


def load_adp() -> pd.DataFrame:
    df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_fpecr_latest.csv")
    df["ranking_type"] = df["fp_page"].apply(lambda x: os.path.split(x)[-1].replace(".php", ""))
    return df


@st.cache_data(ttl=60 * 60 * 24)
def load_data():
    # Merge ADP
    data = load_adp()
    ranking_type_list = sorted(list(data.ranking_type.unique()))
    return data, ranking_type_list


def filtered_ecr_dataframe(data: pd.DataFrame, ranking_type_list: list[str]):
    default_ix = ranking_type_list.index("ppr-superflex-cheatsheets")
    ranking_type_selected = st.selectbox("ECR Format:", ranking_type_list, index=default_ix)
    ranking_type_filter = data["ranking_type"] == ranking_type_selected

    is_advanced = st.checkbox("Show Advanced View")

    id_cols = [
        # "player_square_image_url",
        "player",
        "pos",
        "team",
    ]

    id_cols_advanced = [
        "bye",
        "player_owned_yahoo",
    ]

    adp_cols: list[str] = [
        "ecr",
    ]

    adp_cols_advanced = ["sd", "best", "worst"]

    if is_advanced:
        show_columns = id_cols + id_cols_advanced + adp_cols + adp_cols_advanced
    else:
        show_columns = id_cols + adp_cols

    data_filtered_by_ranking_type = data.loc[ranking_type_filter]
    latest_scrape_date = data_filtered_by_ranking_type.scrape_date.max()
    st.write(f"Scraped data as of: {latest_scrape_date}")

    filtered_data = filter_dataframe(data.loc[ranking_type_filter, show_columns])
    st.dataframe(
        filtered_data,
        hide_index=True,
        height=35 * (len(filtered_data) + 1) + 12,
        use_container_width=True,
        column_config={
            # "player_square_image_url": st.column_config.ImageColumn(label="", help="Player image"),
        },
    )

    st.write("Source: https://github.com/dynastyprocess/data")


def get_keeper_app():
    keeper_title = "Expert Consensus Rankings"
    st.set_page_config(page_title=keeper_title, page_icon=DEFAULT_ICON, layout="wide")
    common_page_config()
    st.title(keeper_title)
    data, ecr_type_list = load_data()

    with st.container():
        filtered_ecr_dataframe(data, ecr_type_list)


if __name__ == "__main__":
    get_keeper_app()