File size: 9,340 Bytes
0ed8b3a
45e7011
0ed8b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccb57f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed8b3a
 
45e7011
 
 
 
 
 
 
0ed8b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e7011
0ed8b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e7011
0ed8b3a
 
 
 
 
 
 
 
 
45e7011
 
 
0ed8b3a
 
45e7011
 
0ed8b3a
 
 
 
45e7011
 
0ed8b3a
b90f26c
0ed8b3a
 
 
 
 
 
 
 
 
dd9e6a9
 
0ed8b3a
 
 
 
 
 
 
 
 
 
 
 
7ccb57f
0ed8b3a
7ccb57f
0ed8b3a
 
 
 
7ccb57f
0ed8b3a
 
 
 
 
7ccb57f
 
0ed8b3a
7ccb57f
 
 
0ed8b3a
7ccb57f
0ed8b3a
 
7ccb57f
45e7011
 
 
7ccb57f
 
 
 
86e97fb
 
 
 
 
 
 
 
7ccb57f
 
 
 
 
0ed8b3a
 
45e7011
 
 
0ed8b3a
 
 
 
 
45e7011
 
 
 
 
 
 
0ed8b3a
 
 
 
45e7011
 
 
 
0ed8b3a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import json
import os
import pandas as pd
import requests
import streamlit as st

from config import DEFAULT_ICON, SEASON
from login_component import is_token_in_session
from shared_page import common_page_config
from streamlit_filter import filter_dataframe


@st.cache_data(ttl=60 * 60 * 24)
def load_yahoo_to_fp_id_map() -> dict[str, str]:
    df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv")
    for id_col in ["yahoo_id", "fantasypros_id"]:
        df[id_col] = df[id_col].fillna(-9999).apply(lambda x: str(int(x)))

    player_id_dict = df.set_index("yahoo_id")["fantasypros_id"].to_dict()
    # map team DST
    player_id_dict.update(
        {
            "100022": "8000",  # Arizona
            "100001": "8010",  # Atlanta
            "100033": "8020",  # Baltimore
            "100002": "8030",  # Buffalo
            "100029": "8040",  # Carolina
            "100003": "8050",  # Chicago
            "100004": "8060",  # Cincinnati
            "100005": "8070",  # Cleveland
            "100006": "8080",  # Dallas
            "100007": "8090",  # Denver
            "100008": "8100",  # Detroit
            "100009": "8110",  # Green Bay
            "100034": "8120",  # Houston
            "100011": "8130",  # Indianapolis
            "100030": "8140",  # Jacksonville
            "100012": "8150",  # Kansas City
            "100013": "8220",  # Las Vegas
            "100014": "8280",  # Los Angeles Rams
            "100024": "8250",  # Los Angeles Chargers
            "100015": "8160",  # Miami
            "100016": "8170",  # Minnesota
            "100017": "8180",  # New England
            "100018": "8190",  # New Orleans
            "100019": "8200",  # New York Giants
            "100020": "8210",  # New York Jets
            "100021": "8230",  # Philadelphia
            "100023": "8240",  # Pittsburgh
            "100025": "8270",  # San Francisco
            "100026": "8260",  # Seattle
            "100027": "8290",  # Tampa Bay
            "100010": "8300",  # Tennessee
            "100028": "8310",  # Washington
        }
    )
    return player_id_dict


def load_depth_charts():
    df = pd.read_csv(os.path.join(os.path.dirname(__file__), "../../tests/mocks/2024 Depth Charts - formatted.csv"))
    df["yahoo_id"] = df["yahoo_id"].apply(lambda x: str(int(x)))
    df["fp_id"] = df["yahoo_id"].apply(lambda x: load_yahoo_to_fp_id_map().get(x, x))
    return df


def extract_ecr_var_data(request_text_str, var_name: str):
    start_str = f"""var {var_name} = """
    end_str = """};"""
    end_offset = 1  # include closing bracket

    start_slice_pos = request_text_str.find(start_str) + len(start_str)
    first_slice = request_text_str[start_slice_pos:]
    end_slice_pos = first_slice.find(end_str) + end_offset
    dom_str = first_slice[:end_slice_pos]
    var_json = json.loads(dom_str)
    return var_json


@st.cache_data(ttl=60 * 60 * 24)
def load_ecr_data():
    request_text = get_ecr_request_text()
    ecr_data = extract_ecr_var_data(request_text, "ecrData")
    ecr_columns = [
        "player_id",
        "player_name",
        "player_position_id",
        "player_bye_week",
        "rank_ecr",
        "pos_rank",
        "tier",
    ]
    df_ecr = pd.DataFrame(ecr_data["players"])[ecr_columns]
    df_ecr["rank_ecr"] = df_ecr["rank_ecr"].astype(int)
    df_ecr["player_id"] = df_ecr["player_id"].apply(lambda x: str(int(x)))

    # sos_data = extract_ecr_var_data(request_text, "sosData")
    # adp_data = extract_ecr_var_data(request_text, "adpData")
    return df_ecr


@st.cache_data(ttl=60 * 60 * 24)
def get_ecr_request_text():
    r = requests.get("https://www.fantasypros.com/nfl/rankings/half-point-ppr-cheatsheets.php")
    return r.text


@st.cache_resource(ttl=60 * 60 * 24)
def get_league_settings_with_cache(selected_league):
    return st.session_state.yahoo_client.parse_league_settings(selected_league)


def highlight_drafted(data_row_series):
    return ["background-color: red" if data_row_series.is_drafted else "" for _ in range(len(data_row_series))]


def display_formatted_tiers(df):
    st.dataframe(
        df.sort_values("rank_ecr").style.apply(highlight_drafted, axis=1),
        hide_index=True,
        height=35 * (len(df) + 1) + 5,
        column_order=[
            "rank_ecr",
            "player_name",
            # "player_position_id",
            "player_bye_week",
            # "tier",
            # "is_drafted",
            "Team",
            "Depth Position",
            "Source",
        ],
        column_config={
            "player_name": st.column_config.TextColumn(label="", help="Player's name"),
            "player_position_id": st.column_config.TextColumn(label="", help="Player's position"),
            "player_bye_week": st.column_config.NumberColumn(label="Bye", help="Player's Bye Week"),
            "rank_ecr": st.column_config.NumberColumn(label="Rank", help="Player ECR Rank"),
            "tier": st.column_config.NumberColumn(label="Tier", help="Player Tier"),
            "is_drafted": st.column_config.CheckboxColumn(label="Drafted", help="Has been drafted"),
            "Depth Position": st.column_config.TextColumn(label=""),
            "Source": st.column_config.TextColumn(label=""),
        },
        use_container_width=True,
    )


def get_page():
    page_title = "Yahoo Draft Live Summary"
    st.set_page_config(page_title=page_title, page_icon=DEFAULT_ICON, layout="wide")
    common_page_config()
    st.title(page_title)

    if not (is_token_in_session() and st.session_state.get("user_admin")):
        st.write("Exclusive feature")

    else:
        selected_season = st.selectbox("Select Season", list(range(SEASON, 2012, -1)))
        user_leagues = st.session_state.yahoo_client.find_all_leagues_for_logged_in_user(season=selected_season)
        selected_league = st.selectbox("Select league", user_leagues)
        league_settings = get_league_settings_with_cache(selected_league)
        st.header(f"{league_settings.name} - {league_settings.season}")
        with st.expander("Show Positions"):
            st.dataframe(
                pd.DataFrame(league_settings.roster_positions).set_index("position")["count"],
            )

        draft_result = st.session_state.yahoo_client.get_draft(selected_league)
        if st.button("Load / Refresh"):
            draft_result = st.session_state.yahoo_client.get_draft(selected_league)
        if "player_key" in draft_result:
            draft_result["player_id"] = draft_result["player_key"].apply(lambda x: x.rsplit(".", 1)[-1] if x else x)
        else:
            draft_result["player_id"] = ""
        draft_result["fp_id"] = draft_result["player_id"].apply(lambda x: load_yahoo_to_fp_id_map().get(x, x))

        ecr_data = load_ecr_data()
        draft_result_merge_cols = [
            "fp_id",
            "team_key",
            "round",
            "pick",
        ]
        for col in draft_result_merge_cols:
            if col not in draft_result:
                draft_result[col] = ""
        ecr_with_draft = ecr_data.merge(
            draft_result[draft_result_merge_cols], how="outer", left_on="player_id", right_on="fp_id"
        )
        ecr_with_draft["is_drafted"] = ecr_with_draft["fp_id"].notna()

        depth_charts = load_depth_charts()
        ecr_with_draft = ecr_with_draft.merge(depth_charts, how="left", left_on="player_id", right_on="fp_id")

        if ("round" in ecr_with_draft) and ("pick" in ecr_with_draft):
            draft_picks_only = ecr_with_draft[ecr_with_draft.is_drafted].sort_values(["round", "pick"])

        with st.expander("Show Draft Results"):

            pos_pivot_df = draft_picks_only.pivot_table(
                values="player_id", columns="player_position_id", index="team_key", aggfunc="count", margins=True
            )
            st.dataframe(pos_pivot_df, use_container_width=True)

            if st.checkbox("Full Results"):
                st.dataframe(draft_picks_only)

        with st.expander("Unmatched"):
            st.dataframe(ecr_with_draft[ecr_with_draft.player_name.isna()])

        st.header("ECR Tiers")
        with st.expander("Filters"):
            filtered_data = filter_dataframe(
                ecr_with_draft,
                force_on=True,
                force_on_columns=["is_drafted", "player_position_id", "Team", "Source", "Depth Position"],
            )

        position_list = [
            x for x in ["QB", "RB", "WR", "TE", "DST", "K"] if x in filtered_data.player_position_id.unique()
        ]

        if not st.checkbox("Show DST/K"):
            position_list = [x for x in position_list if x not in ["DST", "K"]]

        if st.checkbox("Show Overall"):
            position_list = ["OVERALL"]

        columns_list = st.columns(len(position_list))
        for pos, col in zip(position_list, columns_list):
            with col:
                st.header(pos)
                if pos == "OVERALL":
                    df_pos = filtered_data
                else:
                    df_pos = filtered_data[filtered_data.player_position_id == pos]
                for tier, df_tier in df_pos.groupby("tier"):
                    st.header(f"Tier {tier}")
                    display_formatted_tiers(df_tier)


if __name__ == "__main__":
    get_page()