File size: 3,679 Bytes
77fb55b
ac8c5cd
 
 
 
 
77fb55b
ac8c5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b0333
ac8c5cd
 
77b0333
ac8c5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77fb55b
 
 
 
 
 
 
 
 
 
 
 
 
ac8c5cd
 
 
77fb55b
ac8c5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from bs4 import BeautifulSoup
import datetime
from multiprocessing import Pool
import numpy as np
import pandas as pd
from pydantic import BaseModel, Field
import requests
from typing import Optional
from urllib.parse import urljoin

from domain.teams import ALL_TEAMS, NFLTeam


MULTIPROCESSING_ENABLED = False

PRACTICE_WEEK = {
    "Mon": 0,
    "Tue": 1,
    "Wed": 2,
    "Thu": 3,
    "Fri": 4,
    "Sat": 5,
    "Sun": 6,
    "Monday": 0,
    "Tuesday": 1,
    "Wednesday": 2,
    "Thursday": 3,
    "Friday": 4,
    "Saturday": 5,
    "Sunday": 6,
}


DAY_OF_WEEK_STRING_MAPPING = {
    "Monday": "Mon",
    "Tuesday": "Tue",
    "Wednesday": "Wed",
    "Thursday": "Thu",
    "Friday": "Fri",
    "Saturday": "Sat",
    "Sunday": "Sun",
}


WEEK_1_BEGIN_DATE = datetime.datetime(2024, 9, 2)
CURRENT_DATE = datetime.datetime.now()
CURRENT_WEEK = max(1, int(1 + (CURRENT_DATE - WEEK_1_BEGIN_DATE).days / 7))
CURRENT_SEASON = 2024


class PracticeReportRawRow(BaseModel):
    Team: str
    Player: str
    Position: str
    Injury: str
    Sun: Optional[str] = None
    Mon: Optional[str] = None
    Tue: Optional[str] = None
    Wed: Optional[str] = None
    Thu: Optional[str] = None
    Fri: Optional[str] = None
    Sat: Optional[str] = None
    game_status: str = Field(alias="Game Status")

    @classmethod
    def replace_nan(self, value) -> str:
        if isinstance(value, float):
            if np.isnan(value):
                return ""
        return value

    @classmethod
    def from_raw(cls, input_dict) -> "PracticeReportRawRow":
        return cls(**{DAY_OF_WEEK_STRING_MAPPING.get(k, k): cls.replace_nan(v) for k, v in input_dict.items()})


def get_injury_report_dataframe(team: NFLTeam):
    injury_report_url = urljoin(team.injury_report_url, f"week/REG-{CURRENT_WEEK}")
    report_request = requests.get(injury_report_url)
    report_soup = BeautifulSoup(report_request.content)
    team_names_spans = report_soup.find_all("span", {"class": "nfl-o-injury-report__club-name"})
    assert team_names_spans
    team_names_str = [x.get_text() for x in team_names_spans]
    assert team_names_str[0] == team.team_full_name
    tables = report_soup.find_all("table")
    df_report = pd.read_html(str(tables))[0]
    return df_report


def scrape_team_injury_report(team: NFLTeam) -> pd.DataFrame:
    print(f"Scraping Injury Report for: {team.team_full_name}")
    try:
        team_report = get_injury_report_dataframe(team)
    except Exception:
        print(f"Failed to scrape practice report for: {team.team_full_name}")
        return pd.DataFrame()
    validated_row_list = []
    for df_row_dict in team_report.to_dict("records"):
        row_to_add = df_row_dict
        row_to_add["Team"] = team.team_full_name
        validated_row_list.append(PracticeReportRawRow.from_raw(row_to_add))
    validated_df = pd.DataFrame([x.dict() for x in validated_row_list])
    # drop all na columns
    validated_df.dropna(axis=1, how="all", inplace=True)
    # replace day of week with practice day from 1-3
    day_idx = 1
    last_practice_day = None
    for col in validated_df.columns:
        if col in PRACTICE_WEEK:
            validated_df.rename(columns={col: str(day_idx)}, inplace=True)
            day_idx += 1
            last_practice_day = col
    validated_df["Last Practice Day"] = last_practice_day
    return validated_df


def scrape_all_team_injury_report() -> pd.DataFrame:
    if MULTIPROCESSING_ENABLED:
        with Pool() as pool:
            team_df_list = pool.map(scrape_team_injury_report, ALL_TEAMS)
    else:
        team_df_list = [scrape_team_injury_report(team) for team in ALL_TEAMS]
    return pd.concat(team_df_list)