YFDashboard / src /pages /1_Keepers.py
Jon Solow
Set 24 hour cache ttl
297c9c5
raw
history blame
5.06 kB
import os
import pandas as pd
import streamlit as st
from config import DEFAULT_ICON, LEAGUE_NAME, LEAGUE_NUMBER_TEAMS
from streamlit_filter import filter_dataframe
KEEPER_DATA_URL = "../../tests/mocks/2023_keepers.csv"
HEADSHOT_DATA_URL = "../../tests/mocks/2023_player_headshots.csv"
def load_player_ids() -> pd.DataFrame:
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv")
df["merge_id"] = df["yahoo_id"].combine_first(df["stats_id"])
return df
def load_adp() -> pd.DataFrame:
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/values-players.csv")
return df
def add_opinionated_keeper_value(df: pd.DataFrame):
for score_fmt in ["1qb", "2qb"]:
df[f"value_{score_fmt}"] = (df["keeper_cost"] - 0.5) * LEAGUE_NUMBER_TEAMS - df[f"ecr_{score_fmt}"]
@st.cache_data(ttl=60*60*24)
def load_data():
data = pd.read_csv(os.path.join(os.path.dirname(__file__), KEEPER_DATA_URL), index_col=0)
# Hack to get position, replace with better position from yahoo api in future
data["position"] = data["eligible_positions"].apply(lambda x: eval(x)[0])
data.columns = data.columns.str.lower()
teams_list = sorted(list(data["team_name"].unique()))
# Merge player ids
df_player_ids = load_player_ids()
data = data.merge(df_player_ids, how="left", left_on="player_id", right_on="merge_id", suffixes=("", "_ids"))
# Merge ADP
df_adp = load_adp()
data = data.merge(df_adp, how="left", left_on="fantasypros_id", right_on="fp_id", suffixes=("", "_adp"))
add_opinionated_keeper_value(data)
return data, teams_list
def filtered_keeper_dataframe(data: pd.DataFrame, teams_list: list[str]):
teams_selected = st.multiselect("Team:", teams_list)
teams_filter = data["team_name"].isin(teams_selected) if teams_selected else data["team_name"].isin(teams_list)
is_advanced = st.checkbox("Show Advanced View")
id_cols = [
"team_name",
"headshot_url",
"name",
]
id_cols_advanced = [
"team",
"position",
]
cost_cols = [
"keeper_cost",
"eligible",
]
cost_cols_advanced = [
"years_eligible",
]
adp_cols: list[str] = []
adp_cols_advanced = [
"ecr_1qb",
"value_1qb",
"ecr_2qb",
"value_2qb",
"ecr_pos",
]
if is_advanced:
show_columns = id_cols + id_cols_advanced + cost_cols + cost_cols_advanced + adp_cols + adp_cols_advanced
else:
show_columns = id_cols + cost_cols + adp_cols
filtered_data = filter_dataframe(data.loc[teams_filter, show_columns])
st.dataframe(
filtered_data,
hide_index=True,
height=35 * (len(filtered_data) + 1) + 12,
use_container_width=True,
column_config={
"team_name": st.column_config.TextColumn(label="League Team", help="Name of fantasy League team."),
"headshot_url": st.column_config.ImageColumn(label="", help="Player image"),
"name": st.column_config.TextColumn(label="Name", help="Player's name"),
"team": st.column_config.TextColumn(label="NFL Team"),
"position": st.column_config.TextColumn(label="Position", help="Player's position"),
"keeper_cost": st.column_config.NumberColumn(
label="Keeper Cost", help="Draft Round Cost to keep player. See Rules for details."
),
"eligible": st.column_config.TextColumn(label="Eligible", help="Is player eligible to be keeper?"),
"years_eligible": st.column_config.TextColumn(
label="Years Eligible",
help="Number of further consecutive seasons player can be kept (subject to maximum of 2)",
),
"ecr_1qb": st.column_config.NumberColumn(
label="ECR 1QB", help="Player's average Expert Consensus Rank (ECR) for 1 QB League"
),
"value_1qb": st.column_config.NumberColumn(
label="Value 1QB", help="Approx. number of draft picks of keeper value vs ECR 1QB"
),
"ecr_2qb": st.column_config.NumberColumn(
label="ECR 2QB", help="Player's average Expert Consensus Rank (ECR) for 2 QB League"
),
"value_2qb": st.column_config.NumberColumn(
label="Value 2QB", help="Approx. number of draft picks of keeper value vs ECR 2QB"
),
"ecr_pos": st.column_config.NumberColumn(
label="ECR Position", help="Player's average Expert Consensus Rank (ECR) at the player's position"
),
},
)
def get_keeper_app():
keeper_title = f"{LEAGUE_NAME} Keeper Options"
st.set_page_config(page_title=keeper_title, page_icon=DEFAULT_ICON, layout="wide")
st.title(keeper_title)
data, teams_list = load_data()
with st.container():
filtered_keeper_dataframe(data, teams_list)
if __name__ == "__main__":
get_keeper_app()