Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from config import DEFAULT_ICON, LEAGUE_NAME, LEAGUE_NUMBER_TEAMS | |
from shared_page import common_page_config | |
from streamlit_filter import filter_dataframe | |
KEEPER_DATA_URL = "../../tests/mocks/2023_keepers.csv" | |
HEADSHOT_DATA_URL = "../../tests/mocks/2023_player_headshots.csv" | |
def load_player_ids() -> pd.DataFrame: | |
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv") | |
df["merge_id"] = df["yahoo_id"].combine_first(df["stats_id"]) | |
return df | |
def load_adp() -> pd.DataFrame: | |
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_fpecr_latest.csv") | |
df = df.loc[ | |
df.fp_page == "/nfl/rankings/ppr-superflex-cheatsheets.php", | |
[ | |
"yahoo_id", | |
"ecr", | |
"sd", | |
], | |
] | |
return df | |
def convert_ecr_to_round_val(ecr_float: float, round_offset: float = 1.0, pick_offset: float = -1.0) -> float: | |
# As a float, store pick 1 of round 1 as 1.0 | |
return round_offset + (ecr_float + pick_offset) / LEAGUE_NUMBER_TEAMS | |
def add_opinionated_keeper_value(df: pd.DataFrame): | |
# Manual Hack for overranking of backup QBs | |
df.loc[ | |
df["name"].isin( | |
[ | |
"Teddy Bridgewater", | |
"Davis Mills", | |
"Andy Dalton", | |
"Tyler Huntley", | |
"Mike White", | |
"Gardner Minshew", | |
"Colt McCoy", | |
"Sam Darnold", | |
"Carson Wentz", | |
"Trey Lance", | |
"Taylor Heinicke", | |
] | |
), | |
["ecr"], | |
] = np.nan | |
df["ecr"] = df["ecr"].apply(convert_ecr_to_round_val) | |
# Convert sd without offset to show as pure pick diff | |
df["sd"] = df["sd"].apply(lambda x: convert_ecr_to_round_val(x, 0, 0)) | |
# assumes midround keeper | |
# fill -99 for players that are not ranked in ecr | |
df["value_keeper"] = (df["keeper_cost"] + 0.5 - df["ecr"]).fillna(-99) | |
def load_data(): | |
data = pd.read_csv(os.path.join(os.path.dirname(__file__), KEEPER_DATA_URL), index_col=0) | |
# Hack to get position, replace with better position from yahoo api in future | |
data["position"] = data["eligible_positions"].apply(lambda x: eval(x)[0]) | |
data.columns = data.columns.str.lower() | |
teams_list = sorted(list(data["team_name"].unique())) | |
# Merge player ids | |
df_player_ids = load_player_ids() | |
data = data.merge(df_player_ids, how="left", left_on="player_id", right_on="merge_id", suffixes=("", "_ids")) | |
# Merge ADP | |
df_adp = load_adp() | |
data = data.merge(df_adp, how="left", left_on="player_id", right_on="yahoo_id", suffixes=("", "_adp")) | |
add_opinionated_keeper_value(data) | |
return data, teams_list | |
def filtered_keeper_dataframe(data: pd.DataFrame, teams_list: list[str]): | |
teams_selected = st.multiselect("Team:", teams_list, placeholder="Select a user team to filter") | |
teams_filter = data["team_name"].isin(teams_selected) if teams_selected else data["team_name"].isin(teams_list) | |
eligible_options = [True, False] | |
is_eligible_selected = st.multiselect( | |
"Keeper Eligible:", eligible_options, placeholder="Select True to filter eligible only" | |
) | |
eligible_filter = ( | |
data["eligible"].isin(is_eligible_selected) if is_eligible_selected else data["eligible"].isin(eligible_options) | |
) | |
is_advanced = st.checkbox("Show Advanced View") | |
id_cols = [ | |
"team_name", | |
"headshot_url", | |
"name", | |
] | |
id_cols_advanced = [ | |
"team", | |
"position", | |
] | |
cost_cols = [ | |
"keeper_cost", | |
"eligible", | |
] | |
cost_cols_advanced = [ | |
"years_eligible", | |
] | |
adp_cols: list[str] = [] | |
adp_cols_advanced = [ | |
"ecr", | |
"value_keeper", | |
] | |
if is_advanced: | |
show_columns = id_cols + id_cols_advanced + cost_cols + cost_cols_advanced + adp_cols + adp_cols_advanced | |
else: | |
show_columns = id_cols + cost_cols + adp_cols | |
data_with_filters_applied = data.loc[teams_filter & eligible_filter, show_columns] | |
filtered_data = filter_dataframe(data_with_filters_applied) | |
st.dataframe( | |
filtered_data, | |
hide_index=True, | |
height=35 * (len(filtered_data) + 1) + 12, | |
use_container_width=True, | |
column_config={ | |
"team_name": st.column_config.TextColumn(label="League Team", help="Name of fantasy League team."), | |
"headshot_url": st.column_config.ImageColumn(label="", help="Player image"), | |
"name": st.column_config.TextColumn(label="Name", help="Player's name"), | |
"team": st.column_config.TextColumn(label="NFL Team"), | |
"position": st.column_config.TextColumn(label="Position", help="Player's position"), | |
"keeper_cost": st.column_config.NumberColumn( | |
label="Keeper Cost", help="Draft Round Cost to keep player. See Rules for details." | |
), | |
"eligible": st.column_config.CheckboxColumn(label="Eligible", help="Is player eligible to be keeper?"), | |
"years_eligible": st.column_config.NumberColumn( | |
label="Years Eligible", | |
help="Number of further consecutive seasons player can be kept (subject to maximum of 2)", | |
), | |
"ecr": st.column_config.NumberColumn( | |
label="ECR", | |
help="Player's average draft round.pick Expert Consensus Rank (ECR) for PPR - Superflex League", | |
), | |
"value_keeper": st.column_config.NumberColumn( | |
label="Value Keeper", | |
help="Approx. number of draft rounds of keeper value vs ECR PPR - Superflex League", | |
), | |
}, | |
) | |
def get_keeper_app(): | |
keeper_title = f"{LEAGUE_NAME} Keeper Options" | |
st.set_page_config(page_title=keeper_title, page_icon=DEFAULT_ICON, layout="wide") | |
common_page_config() | |
st.title(keeper_title) | |
data, teams_list = load_data() | |
with st.container(): | |
filtered_keeper_dataframe(data, teams_list) | |
if __name__ == "__main__": | |
get_keeper_app() | |