import datetime import pandas as pd import streamlit as st from config import DEFAULT_ICON from shared_page import common_page_config from queries.footballguys.constants import YEAR from queries.nflverse.github_data import get_pbp_participation, get_current_tables, SEASON def load_data(): data = get_pbp_participation(YEAR) teams_list = sorted(filter(None, data.possession_team.unique())) # position_list = data.position.unique() # weeks_list = sorted(data.week.unique()) data_load_time_str = datetime.datetime.utcnow().strftime("%m/%d/%Y %I:%M %p") return data, teams_list, data_load_time_str def get_page(): page_title = f"Team Formations - {YEAR}" st.set_page_config(page_title=page_title, page_icon=DEFAULT_ICON, layout="wide") common_page_config() st.title(page_title) if f"ftn_charting_ftn_charting_{SEASON}" not in get_current_tables(): st.write("Data not loaded.") st.write("Check loaded data [here](./Load_Data)") return data, teams_list, data_load_time_str = load_data() st.write(f"Data loaded as of: {data_load_time_str} UTC") default_groups = [ "down", "play_type", "offense_personnel", ] group_options = [ "week", "down", "qtr", "ydstogo", "play_type", "pass_length", "pass_location", "possession_team", "offense_formation", "offense_personnel", "number_of_pass_rushers", "defenders_in_box", "defense_personnel", ] group_by_selected = st.multiselect("Group by:", group_options) or default_groups team_selected = st.selectbox("Team:", teams_list) week_selection = st.slider( "Filter Week Range:", min_value=data["week"].min(), max_value=data["week"].max(), value=(data["week"].min(), data["week"].max()), step=1, ) with st.container(): filtered_data = data[ (data.possession_team == team_selected) & (data.play_type.isin(["pass", "run"])) & (data["week"].between(*week_selection)) ] st.dataframe( pd.pivot_table( filtered_data, values="count_col", index=group_by_selected, columns="week", aggfunc={"count_col": "sum"}, # margins=True, ), use_container_width=False, ) if __name__ == "__main__": get_page()