import json import pandas as pd from stqdm import stqdm from typing import Optional from simulate import ( calculate_scenario_probabilities, create_simulate_summary, run_simulations, ) from yahoo_client import YahooFantasyClient def calculate_luck(df: pd.DataFrame, as_of_week: Optional[int] = None, include_current: bool = False) -> pd.DataFrame: if as_of_week: df_complete = df[df.week <= as_of_week] else: status_list = ["postevent"] if include_current: status_list.append("midevent") df_complete = df[df.matchup_status.isin(status_list)] df_complete["actual_wins"] = df_complete["win_probability"].apply(lambda x: x > 0.5) df_list = [] n_teams = df.team_name.nunique() for week, df_week in df_complete.groupby("week"): if len(df_week) != n_teams: next else: df_week["against_all_wins"] = ((df_week.team_points.rank().astype("float") - 1) / (n_teams - 1)).round(2) df_week["against_all_losses"] = 1 - df_week["against_all_wins"] df_week["half_wins"] = (df_week["against_all_wins"] >= 0.5) * 1.0 df_week["half_losses"] = 1 - df_week["half_wins"] df_week["against_all_luck"] = df_week["actual_wins"] - df_week["against_all_wins"] df_week["half_luck"] = df_week["actual_wins"] - df_week["half_wins"] df_week["earned_wins"] = ((df_week["against_all_wins"] + df_week["half_wins"]) / 2).round(2) df_week["luck_wins"] = df_week["actual_wins"] - df_week["earned_wins"] df_list.append(df_week) df_luck = pd.concat(df_list) return df_luck def get_grouped_luck(df_luck_all_weeks: pd.DataFrame) -> pd.DataFrame: summ_cols = [ "team_name", "team_points", "against_all_wins", "half_wins", "actual_wins", "earned_wins", "luck_wins", ] sort_by = "luck_wins" return df_luck_all_weeks[summ_cols].groupby("team_name").sum().sort_values(sort_by, ascending=False) def summarize_remaining_wins_from_matches_map(matches_map): """ Return map for all teams to map of number remaining wins to array of playoff and bye prob, respectively. """ remaining_map = {} for team_name, team_matches_map in matches_map.items(): team_remaining_map = {} for match_binary_str, prob_list in team_matches_map.items(): n_wins = sum([int(x) for x in match_binary_str]) if n_wins in team_remaining_map: incr_obs, incr_playoff_prob, incr_bye_prob = prob_list if incr_obs == 0: continue current_obs, current_playoff_prob, current_bye_prob = team_remaining_map[n_wins] new_obs = current_obs + incr_obs new_playoff_prob = round( (current_obs * current_playoff_prob + incr_obs * incr_playoff_prob) / new_obs, 3 ) new_bye_prob = round((current_obs * current_bye_prob + incr_obs * incr_bye_prob) / new_obs, 3) team_remaining_map[n_wins] = [new_obs, new_playoff_prob, new_bye_prob] else: team_remaining_map[n_wins] = prob_list remaining_map[team_name] = team_remaining_map return remaining_map def analyze_league(league_key: str, yahoo_client: YahooFantasyClient) -> None: df_scores = yahoo_client.full_schedule_dataframe(league_key) league_settings = yahoo_client.parse_league_settings(league_key) name_str = league_settings.name.strip().replace(" ", "_").lower() sim_completed_weeks = league_settings.current_week - 1 print(f"{sim_completed_weeks=}") stqdm.pandas() df_sims = run_simulations( df_scores, complete_weeks=sim_completed_weeks, n_sims=10000, n_playoff=league_settings.num_playoff_teams, ) df_sim_sum = create_simulate_summary(df_sims) df_sim_sum.to_csv(f"{name_str}_sim_sum.csv") scenario_probs = calculate_scenario_probabilities(df_sims) with open(f"{name_str}_scenario_probs.json", "w") as f: json.dump(scenario_probs, f) remaining_wins_to_probs_map = summarize_remaining_wins_from_matches_map(scenario_probs) with open(f"{name_str}_remaining_wins_probs.json", "w") as f: json.dump(remaining_wins_to_probs_map, f)