Spaces:
Sleeping
Sleeping
from time import time | |
from typing import List, Optional, Tuple, Union | |
import json | |
import os | |
import requests | |
from urllib.parse import urljoin | |
from django.core.files.uploadedfile import InMemoryUploadedFile, TemporaryUploadedFile | |
import logging | |
MODEL_ENDPOINT_URL = os.getenv("MODEL_ENDPOINT_URL", "https://0.0.0.0:2000") | |
def try_make_request(request_kwargs, request_type: str): | |
try: | |
request_kwargs["timeout"] = 3 | |
if request_type.lower() == "get": | |
response = requests.get(**request_kwargs) | |
elif request_type.lower() == "post": | |
response = requests.post(**request_kwargs) | |
else: | |
raise Exception("Request Type not Supported. Only get, post supported.") | |
return json.loads(response.content) | |
except requests.exceptions.ConnectionError: | |
logging.warning("Failed Model prediction", exc_info=True) | |
return ["Image Failed to Predict", "Try Another Image", "", "", ""] | |
except Exception: | |
logging.warning("Failed Model prediction", exc_info=True) | |
return ["Image Failed to Predict", "Try Another Image", "", "", ""] | |
def predict_url(url: str) -> List[str]: | |
params = {"url": url} | |
headers = {"content-type": "application/json", "Accept-Charset": "UTF-8"} | |
request_url = urljoin(MODEL_ENDPOINT_URL, "predict_url") | |
request_kwargs = dict(url=request_url, params=params, headers=headers) | |
return try_make_request(request_kwargs, "get") | |
def predict_file(image_file) -> List[str]: | |
image_file.seek(0) | |
file_ob = { | |
"upload_file": (image_file.name, image_file.read(), image_file.content_type) | |
} | |
request_url = urljoin(MODEL_ENDPOINT_URL, "predict_file") | |
request_kwargs = dict(url=request_url, files=file_ob) | |
return try_make_request(request_kwargs, "post") | |
def get_color_labels(guesses: List[str], actual_label: Optional[str]) -> List[str]: | |
if not actual_label: | |
return ["white"] * len(guesses) | |
return ["lime" if x == actual_label else "white" for x in guesses] | |
def url_image_vars( | |
input_img: Union[str, InMemoryUploadedFile, TemporaryUploadedFile], label: str | |
) -> Tuple[List[str], List[str]]: | |
actual_label = label.title() | |
if not is_healthy(): | |
logging.error("Model failed healthcheck") | |
top_guesses = ["Model Offline", "Try Again Later", "", "", ""] | |
elif isinstance(input_img, str): | |
top_guesses = predict_url(input_img) | |
elif isinstance(input_img, (InMemoryUploadedFile, TemporaryUploadedFile)): | |
top_guesses = predict_file(input_img) | |
else: | |
logging.error(f"Unknown input type: {type(input_img)=}") | |
top_guesses = ["Unknown Input Type", "", "", "", ""] | |
color_labels = get_color_labels(top_guesses, actual_label) | |
return top_guesses, color_labels | |
def is_healthy() -> bool: | |
request_url = urljoin(MODEL_ENDPOINT_URL, "healthcheck") | |
try: | |
response = requests.get(url=request_url, timeout=1) | |
except Exception: | |
logging.error("Failed to make healthcheck request") | |
return False | |
if response.status_code == 200: | |
try: | |
response_content = json.loads(response.content) | |
except Exception: | |
logging.error("Failed to load healthcheck content") | |
return False | |
if response_content == {"status": "alive"}: | |
return True | |
return False | |