File size: 7,173 Bytes
9ec1831
 
1bb1936
9ec1831
 
 
 
 
 
 
 
 
 
1bdce55
 
 
 
 
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f905b
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71d5f0
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb1936
 
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
1bb1936
 
 
 
 
 
 
 
1bdce55
 
1bb1936
 
 
 
 
 
 
 
 
 
 
 
 
1bdce55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from dataclasses import dataclass
import pandas as pd
import streamlit as st

from domain.playoffs import PLAYOFF_TEAM_DEF_PLAYER
from queries.nflverse.github_data import get_player_kicking_stats, get_player_stats, get_team_defense_stats


@dataclass
class StatType:
    key: str
    score: float

    def __post_init__(self):
        STAT_KEY_MAP[self.key] = self


STAT_KEY_MAP: dict[str, StatType] = {}

RUSH_TD = StatType(key="RUSH TD", score=6.0)
REC_TD = StatType(key="REC TD", score=6.0)
OFF_FUM_TD = StatType(key="OFF FUM TD", score=6.0)
PASS_TD = StatType(key="PASS TD", score=4.0)
FG_0_49 = StatType(key="FG 0-49", score=3.0)
FG_50_ = StatType(key="FG 50+", score=5.0)
TWO_PT = StatType(key="2 PT", score=2.0)
RECEPTION = StatType(key="REC", score=1.0)
RUSH_YD = StatType(key="RUSH YD", score=0.1)
REC_YD = StatType(key="REC YD", score=0.1)
PASS_YD = StatType(key="PASS YD", score=0.04)
XP = StatType(key="XP", score=1.0)
FUM_LOST = StatType(key="FUM LOST", score=-2.0)
PASS_INT = StatType(key="PASS INT", score=-2.0)
RET_TD = StatType(key="RET TD", score=6.0)
DEF_TD = StatType(key="DEF TD", score=6.0)
DEF_INT = StatType(key="DEF INT", score=2.0)
FUM_REC = StatType(key="FUM REC", score=2.0)
SAFETY = StatType(key="SAFETY", score=2.0)
SACK = StatType(key="SACK", score=1.0)
PTS_ALLOW_0 = StatType(key="PTS ALLOW 0", score=10.0)
PTS_ALLOW_1_6 = StatType(key="PTS ALLOW 1-6", score=7.0)
PTS_ALLOW_7_13 = StatType(key="PTS ALLOW 7-13", score=4.0)
PTS_ALLOW_14_20 = StatType(key="PTS ALLOW 14-20", score=1.0)
PTS_ALLOW_21_27 = StatType(key="PTS ALLOW 21-27", score=0.0)
PTS_ALLOW_28_34 = StatType(key="PTS ALLOW 28-34", score=-1.0)
PTS_ALLOW_35_ = StatType(key="PTS ALLOW 35+", score=-4.0)
TEAM_WIN = StatType(key="TEAM WIN", score=5.0)
ST_TD = StatType(key="ST TD", score=6.0)


NFLVERSE_STAT_COL_TO_ID: dict[str, str] = {
    "passing_tds": PASS_TD.key,
    "passing_yards": PASS_YD.key,
    "passing_2pt_conversions": TWO_PT.key,
    "sack_fumbles_lost": FUM_LOST.key,
    "interceptions": PASS_INT.key,
    "rushing_tds": RUSH_TD.key,
    "rushing_yards": RUSH_YD.key,
    "rushing_2pt_conversions": TWO_PT.key,
    "rushing_fumbles_lost": FUM_LOST.key,
    "receptions": RECEPTION.key,
    "receiving_tds": REC_TD.key,
    "receiving_yards": REC_YD.key,
    "receiving_2pt_conversions": TWO_PT.key,
    "receiving_fumbles_lost": FUM_LOST.key,
    "special_teams_tds": ST_TD.key,
    "pat_made": XP.key,
    "fg_made_0_19": FG_0_49.key,
    "fg_made_20_29": FG_0_49.key,
    "fg_made_30_39": FG_0_49.key,
    "fg_made_40_49": FG_0_49.key,
    "fg_made_50_59": FG_50_.key,
    "fg_made_60_": FG_50_.key,
    "def_sacks": SACK.key,
    "def_interceptions": DEF_INT.key,
    "def_tds": DEF_TD.key,
    "def_fumble_recovery_opp": FUM_REC.key,
    "def_safety": SAFETY.key,
}

NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK = {
    19: 1,
    20: 2,
    21: 3,
    22: 4,
}


def add_stats_from_player_df_to_stat_map(df: pd.DataFrame, stat_map):
    df_playoffs = df[df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())]
    df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
    for week_player_id_tuple, row in df_playoffs.set_index(["week", "player_id"]).iterrows():
        if isinstance(week_player_id_tuple, tuple):
            week, player_id = week_player_id_tuple
        else:
            # this won't happen but makes mypy happy
            continue
        player_stats: dict[str, float] = {}
        for k, v in row.to_dict().items():
            if k in NFLVERSE_STAT_COL_TO_ID:
                if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
                    player_stats[mapped_k] += v
                else:
                    player_stats[mapped_k] = v

        if player_id not in stat_map[week]:
            stat_map[week][player_id] = player_stats
        else:
            stat_map[week][player_id].update(player_stats)


def add_stats_from_team_def_df_to_stat_map(df: pd.DataFrame, stat_map):
    short_team_names_to_player_id = {t.rosters_short_name: p for t, p in PLAYOFF_TEAM_DEF_PLAYER}
    df_playoffs = df[
        (df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys()) & df.team.isin(short_team_names_to_player_id.keys()))
    ]
    df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])

    for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
        if isinstance(week_team_tuple, tuple):
            week, team = week_team_tuple
        else:
            # this won't happen but makes mypy happy
            continue
        player_stats: dict[str, float] = {}
        player_id = short_team_names_to_player_id[team]
        for k, v in row.to_dict().items():
            if k in NFLVERSE_STAT_COL_TO_ID:
                if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
                    player_stats[mapped_k] += v
                else:
                    player_stats[mapped_k] = v

        if player_id not in stat_map[week]:
            stat_map[week][player_id] = player_stats
        else:
            stat_map[week][player_id].update(player_stats)


# 24 hour cache
@st.cache_data(ttl=60 * 60 * 24)
def assemble_nflverse_stats() -> dict[int, dict[str, dict[str, float]]]:
    # map week -> player_id -> stat_key -> stat value
    stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}

    df_player_stats = get_player_stats()
    df_kicking_stats = get_player_kicking_stats()
    df_def_stats = get_team_defense_stats()

    add_stats_from_player_df_to_stat_map(df_player_stats, stat_map)
    add_stats_from_player_df_to_stat_map(df_kicking_stats, stat_map)
    add_stats_from_team_def_df_to_stat_map(df_def_stats, stat_map)

    return stat_map


def get_live_stats() -> dict[int, dict[str, dict[str, float]]]:
    stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
    # TODO - implement live stats
    return stat_map


# 10 minute cache
@st.cache_data(ttl=60 * 10)
def get_stats_map() -> dict[int, dict[str, dict[str, float]]]:
    # use live stats if available
    stat_map = get_live_stats()

    # use more permanent nflverse stats over live
    nflverse_stats = assemble_nflverse_stats()

    # we overwrite the live stats with nflverse stats if they exist for the same player
    for week, week_stats in nflverse_stats.items():
        for player_id, player_stats in week_stats.items():
            stat_map[week][player_id] = player_stats

    return stat_map


# 10 minute cache
@st.cache_data(ttl=60 * 10)
def get_scores_map() -> dict[int, dict[str, float]]:
    scores_map: dict[int, dict[str, float]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}

    stat_map = get_stats_map()

    for week, week_stats in stat_map.items():
        for player_id, player_stats in week_stats.items():
            score = 0.0
            for stat_key, stat_value in player_stats.items():
                stat_type = STAT_KEY_MAP[stat_key]
                score += stat_type.score * stat_value
            scores_map[week][player_id] = score

    return scores_map