File size: 14,096 Bytes
9ec1831 8aedeba 9ec1831 8aedeba 1bb1936 9ec1831 eeb8c5f 9ec1831 468632c 9ec1831 1bdce55 9ec1831 eeb8c5f 9ec1831 17f905b 9ec1831 c71d5f0 9ec1831 183562b 1bb1936 9ec1831 183562b 9ec1831 1bb1936 8aedeba 1487d7c 8aedeba 7730451 1487d7c 8aedeba 73408d5 4d036d6 73408d5 4d036d6 73408d5 8aedeba 1487d7c 7730451 1487d7c 7730451 8aedeba 1487d7c 4d036d6 1487d7c 8aedeba 7730451 1487d7c 7730451 1487d7c 8aedeba 1bb1936 8aedeba 7730451 8aedeba 1487d7c 8aedeba 1bb1936 468632c 1bb1936 eeb8c5f 1bb1936 1bdce55 468632c 1bdce55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
from dataclasses import dataclass
import json
import pandas as pd
import requests
import streamlit as st
from domain.playoffs import PLAYOFF_TEAM_DEF_PLAYER
from login import get_stat_overrides
from queries.nflverse.github_data import get_player_kicking_stats, get_player_stats, get_team_defense_stats
STAT_CACHE_SECONDS = 60 * 2
@dataclass
class StatType:
key: str
score: float
def __post_init__(self):
STAT_KEY_MAP[self.key] = self
STAT_KEY_MAP: dict[str, StatType] = {}
RUSH_TD = StatType(key="RUSH TD", score=6.0)
REC_TD = StatType(key="REC TD", score=6.0)
OFF_FUM_TD = StatType(key="OFF FUM TD", score=6.0)
PASS_TD = StatType(key="PASS TD", score=4.0)
FG_0_49 = StatType(key="FG 0-49", score=3.0)
FG_50_ = StatType(key="FG 50+", score=5.0)
TWO_PT = StatType(key="2 PT", score=2.0)
RECEPTION = StatType(key="REC", score=1.0)
RUSH_YD = StatType(key="RUSH YD", score=0.1)
REC_YD = StatType(key="REC YD", score=0.1)
PASS_YD = StatType(key="PASS YD", score=0.04)
XP = StatType(key="XP", score=1.0)
FUM_LOST = StatType(key="FUM LOST", score=-2.0)
PASS_INT = StatType(key="PASS INT", score=-2.0)
RET_TD = StatType(key="RET TD", score=6.0)
DEF_TD = StatType(key="DEF TD", score=6.0)
DEF_INT = StatType(key="DEF INT", score=2.0)
FUM_REC = StatType(key="FUM REC", score=2.0)
SAFETY = StatType(key="SAFETY", score=2.0)
SACK = StatType(key="SACK", score=1.0)
PTS_ALLOW_0 = StatType(key="PTS 0", score=10.0)
PTS_ALLOW_1_6 = StatType(key="PTS 1-6", score=7.0)
PTS_ALLOW_7_13 = StatType(key="PTS 7-13", score=4.0)
PTS_ALLOW_14_20 = StatType(key="PTS 14-20", score=1.0)
PTS_ALLOW_21_27 = StatType(key="PTS 21-27", score=0.0)
PTS_ALLOW_28_34 = StatType(key="PTS 28-34", score=-1.0)
PTS_ALLOW_35_ = StatType(key="PTS 35+", score=-4.0)
TEAM_WIN = StatType(key="TEAM WIN", score=5.0)
ST_TD = StatType(key="ST TD", score=6.0)
NFLVERSE_STAT_COL_TO_ID: dict[str, str] = {
"passing_tds": PASS_TD.key,
"passing_yards": PASS_YD.key,
"passing_2pt_conversions": TWO_PT.key,
"sack_fumbles_lost": FUM_LOST.key,
"interceptions": PASS_INT.key,
"rushing_tds": RUSH_TD.key,
"rushing_yards": RUSH_YD.key,
"rushing_2pt_conversions": TWO_PT.key,
"rushing_fumbles_lost": FUM_LOST.key,
"receptions": RECEPTION.key,
"receiving_tds": REC_TD.key,
"receiving_yards": REC_YD.key,
"receiving_2pt_conversions": TWO_PT.key,
"receiving_fumbles_lost": FUM_LOST.key,
"special_teams_tds": ST_TD.key,
"pat_made": XP.key,
"fg_made_0_19": FG_0_49.key,
"fg_made_20_29": FG_0_49.key,
"fg_made_30_39": FG_0_49.key,
"fg_made_40_49": FG_0_49.key,
"fg_made_50_59": FG_50_.key,
"fg_made_60_": FG_50_.key,
"def_sacks": SACK.key,
"def_interceptions": DEF_INT.key,
"def_tds": DEF_TD.key,
"def_fumble_recovery_opp": FUM_REC.key,
"def_safety": SAFETY.key,
}
NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK = {
19: 1,
20: 2,
21: 3,
22: 4,
}
def add_stats_from_player_df_to_stat_map(df: pd.DataFrame, stat_map):
df_playoffs = df[df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_player_id_tuple, row in df_playoffs.set_index(["week", "player_id"]).iterrows():
if isinstance(week_player_id_tuple, tuple):
week, player_id = week_player_id_tuple
else:
# this won't happen but makes mypy happy
continue
player_stats: dict[str, float] = {}
for k, v in row.to_dict().items():
if k in NFLVERSE_STAT_COL_TO_ID:
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
if player_id not in stat_map[week]:
stat_map[week][player_id] = player_stats
else:
stat_map[week][player_id].update(player_stats)
def add_stats_from_team_def_df_to_stat_map(df: pd.DataFrame, stat_map):
short_team_names_to_player_id = {t.rosters_short_name: p for t, p in PLAYOFF_TEAM_DEF_PLAYER}
df_playoffs = df[
(df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys()) & df.team.isin(short_team_names_to_player_id.keys()))
]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
if isinstance(week_team_tuple, tuple):
week, team = week_team_tuple
else:
# this won't happen but makes mypy happy
continue
player_stats: dict[str, float] = {}
player_id = short_team_names_to_player_id[team]
for k, v in row.to_dict().items():
if k in NFLVERSE_STAT_COL_TO_ID:
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
if player_id not in stat_map[week]:
stat_map[week][player_id] = player_stats
else:
stat_map[week][player_id].update(player_stats)
def add_st_stats_to_defense(df: pd.DataFrame, stat_map):
short_team_names_to_player_id = {t.rosters_short_name: p for t, p in PLAYOFF_TEAM_DEF_PLAYER}
df_playoffs = df[
(df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys()) & df.team.isin(short_team_names_to_player_id.keys()))
]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
if isinstance(week_team_tuple, tuple):
week, team = week_team_tuple
else:
# this won't happen but makes mypy happy
continue
player_id = short_team_names_to_player_id[team]
player_stats: dict[str, float] = stat_map[week].get(player_id, {})
# special teams td update only
for k, v in row.to_dict().items():
if k == "special_teams_tds":
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
stat_map[week][player_id] = player_stats
# 24 hour cache
@st.cache_data(ttl=60 * 60 * 24)
def assemble_nflverse_stats() -> dict[int, dict[str, dict[str, float]]]:
# map week -> player_id -> stat_key -> stat value
stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
df_player_stats = get_player_stats()
df_kicking_stats = get_player_kicking_stats()
df_def_stats = get_team_defense_stats()
add_stats_from_player_df_to_stat_map(df_player_stats, stat_map)
add_stats_from_player_df_to_stat_map(df_kicking_stats, stat_map)
add_stats_from_team_def_df_to_stat_map(df_def_stats, stat_map)
add_st_stats_to_defense(df_player_stats, stat_map)
return stat_map
def get_live_stats() -> dict[int, dict[str, dict[str, float]]]:
return get_yahoo_stats()
YAHOO_TO_STAT_MAP: dict[str, dict[str, str]] = {
"PASSING": {
"PASSING_YARDS": PASS_YD.key,
"PASSING_TOUCHDOWNS": PASS_TD.key,
"PASSING_INTERCEPTIONS": PASS_INT.key,
"FUMBLES_LOST": FUM_LOST.key,
},
"RUSHING": {
"RUSHING_TOUCHDOWNS": RUSH_TD.key,
"FUMBLES_LOST": FUM_LOST.key,
"RUSHING_YARDS": RUSH_YD.key,
},
"RECEIVING": {
"RECEPTIONS": RECEPTION.key,
"RECEIVING_YARDS": REC_YD.key,
"RECEIVING_TOUCHDOWNS": REC_TD.key,
"FUMBLES_LOST": FUM_LOST.key,
},
"KICKING": {
"FIELD_GOALS_MADE_0_19": FG_0_49.key,
"FIELD_GOALS_MADE_20_29": FG_0_49.key,
"FIELD_GOALS_MADE_30_39": FG_0_49.key,
"FIELD_GOALS_MADE_40_49": FG_0_49.key,
"FIELD_GOALS_MADE_50_PLUS": FG_50_.key,
"EXTRA_POINTS_MADE": XP.key,
},
"DEFENSE": {
"SACKS": SACK.key,
"INTERCEPTIONS_FORCED": DEF_INT.key,
"INTERCEPTION_RETURN_TOUCHDOWNS": DEF_TD.key,
"FORCED_FUMBLES": FUM_REC.key,
"FUMBLE_RETURN_TOUCHDOWNS": DEF_TD.key,
"SAFETIES": SAFETY.key,
},
}
# cache id map for 24 hours
@st.cache_data(ttl=60 * 60 * 24)
def get_yahoo_id_map() -> dict[str, str]:
teams_included = [x.id_map_short_name for x, _ in PLAYOFF_TEAM_DEF_PLAYER]
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv")
df = df[(df["yahoo_id"].notna() & df["gsis_id"].notna() & df["team"].isin(teams_included))]
df["yahoo_id"] = df["yahoo_id"].astype(int).astype(str)
return df.set_index("yahoo_id")["gsis_id"].to_dict()
# happens to be the same
YAHOO_WEEK_MAP = NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK
def add_yahoo_stat_type_to_stat_map(
stats_object, yahoo_stat_type: str, stat_map: dict[int, dict[str, dict[str, float]]]
):
assert yahoo_stat_type in YAHOO_TO_STAT_MAP
for raw_week, week_dict in stats_object.items():
week = YAHOO_WEEK_MAP[int(raw_week)]
if week not in stat_map:
stat_map[week] = {}
# only used for defense summary
short_team_names_to_player_id = {}
if yahoo_stat_type == "KICKING":
week_leaders = week_dict["POSTSEASON"][""]["FIELD_GOALS_MADE"]["leagues"][0]["leagueWeeks"][0]["leaders"]
elif yahoo_stat_type == "DEFENSE":
week_leaders = week_dict["POSTSEASON"][""]["TOTAL_TACKLES"]["leagues"][0]["leagueWeeks"][0]["leaders"]
short_team_names_to_player_id = {t.rosters_short_name: p for t, p in PLAYOFF_TEAM_DEF_PLAYER}
else:
week_leaders = week_dict["POSTSEASON"][""][f"{yahoo_stat_type}_YARDS"]["leagues"][0]["leagueWeeks"][0][
"leaders"
]
for player in week_leaders:
if yahoo_stat_type == "DEFENSE":
player_id = short_team_names_to_player_id[player["player"]["team"]["abbreviation"]]
else:
raw_player_id = player["player"]["playerId"].split(".")[-1]
player_id = get_yahoo_id_map().get(raw_player_id)
if not player_id:
continue
if player_id not in stat_map[week]:
stat_map[week][player_id] = {}
stats = player["stats"]
for stat in stats:
if stat_key := YAHOO_TO_STAT_MAP[yahoo_stat_type].get(stat["statId"]):
if stat_key in stat_map[week][player_id]:
stat_map[week][player_id][stat_key] += float(stat["value"] or 0.0)
else:
stat_map[week][player_id][stat_key] = float(stat["value"] or 0.0)
# else:
# # remove after mapping all intended
# stat_map[week][player_id][stat["statId"]] = stat["value"]
def get_yahoo_stat_json_obj():
url = "https://sports.yahoo.com/nfl/stats/weekly/?selectedTable=0"
request = requests.get(url)
request_content_str = request.text
start_str = """root.App.main = """
end_str = """;\n}(this));"""
start_slice_pos = request_content_str.find(start_str) + len(start_str)
first_slice = request_content_str[start_slice_pos:]
end_slice_pos = first_slice.find(end_str)
dom_str = first_slice[:end_slice_pos]
dom_json = json.loads(dom_str)
return dom_json
def get_yahoo_stats() -> dict[int, dict[str, dict[str, float]]]:
dom_json = get_yahoo_stat_json_obj()
stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
stats_json = dom_json["context"]["dispatcher"]["stores"]["GraphStatsStore"]
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballPassing"]["nfl"]["200"]["2023"], "PASSING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballRushing"]["nfl"]["200"]["2023"], "RUSHING", stat_map)
add_yahoo_stat_type_to_stat_map(
stats_json["weeklyStatsFootballReceiving"]["nfl"]["200"]["2023"], "RECEIVING", stat_map
)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballKicking"]["nfl"]["200"]["2023"], "KICKING", stat_map)
return_stats = stats_json["weeklyStatsFootballReturns"]["nfl"]["200"]["2023"]
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballDefense"]["nfl"]["200"]["2023"], "DEFENSE", stat_map)
return stat_map
@st.cache_data(ttl=STAT_CACHE_SECONDS)
def get_stats_map() -> dict[int, dict[str, dict[str, float]]]:
# use live stats if available
stat_map = get_live_stats()
# use more permanent nflverse stats over live
nflverse_stats = assemble_nflverse_stats()
# we overwrite the live stats with nflverse stats if they exist for the same player
for week, week_stats in nflverse_stats.items():
for player_id, player_stats in week_stats.items():
stat_map[week][player_id] = player_stats
stat_overrides = get_stat_overrides()
# for stat overrides, override at the stat level
for week, week_stats in stat_overrides.items():
for player_id, player_stats in week_stats.items():
for stat_key, stat_value in player_stats.items():
if player_id not in stat_map[week]:
stat_map[week][player_id] = {}
stat_map[week][player_id][stat_key] = stat_value
return stat_map
@st.cache_data(ttl=STAT_CACHE_SECONDS)
def get_scores_map() -> dict[int, dict[str, float]]:
scores_map: dict[int, dict[str, float]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
stat_map = get_stats_map()
for week, week_stats in stat_map.items():
for player_id, player_stats in week_stats.items():
score = 0.0
for stat_key, stat_value in player_stats.items():
stat_type = STAT_KEY_MAP[stat_key]
score += stat_type.score * stat_value
scores_map[week][player_id] = score
return scores_map
|