File size: 5,734 Bytes
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71d5f0
9ec1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from dataclasses import dataclass
import pandas as pd

from domain.playoffs import PLAYOFF_TEAM_DEF_PLAYER
from queries.nflverse.github_data import get_player_kicking_stats, get_player_stats, get_team_defense_stats


@dataclass
class StatType:
    key: str
    score: float


RUSH_TD = StatType(key="RUSH TD", score=6.0)
REC_TD = StatType(key="REC TD", score=6.0)
OFF_FUM_TD = StatType(key="OFF FUM TD", score=6.0)
PASS_TD = StatType(key="PASS TD", score=4.0)
FG_0_49 = StatType(key="FG 0-49", score=3.0)
FG_50_ = StatType(key="FG 50+", score=5.0)
TWO_PT = StatType(key="2 PT", score=2.0)
RECEPTION = StatType(key="REC", score=1.0)
RUSH_YD = StatType(key="RUSH YD", score=0.1)
REC_YD = StatType(key="REC YD", score=0.1)
PASS_YD = StatType(key="PASS YD", score=0.04)
XP = StatType(key="XP", score=1.0)
FUM_LOST = StatType(key="FUM LOST", score=-2.0)
PASS_INT = StatType(key="PASS INT", score=-2.0)
RET_TD = StatType(key="RET TD", score=6.0)
DEF_TD = StatType(key="DEF TD", score=6.0)
DEF_INT = StatType(key="DEF INT", score=2.0)
FUM_REC = StatType(key="FUM REC", score=2.0)
SAFETY = StatType(key="SAFETY", score=2.0)
SACK = StatType(key="SACK", score=1.0)
PTS_ALLOW_0 = StatType(key="PTS ALLOW 0", score=10.0)
PTS_ALLOW_1_6 = StatType(key="PTS ALLOW 1-6", score=7.0)
PTS_ALLOW_7_13 = StatType(key="PTS ALLOW 7-13", score=4.0)
PTS_ALLOW_14_20 = StatType(key="PTS ALLOW 14-20", score=1.0)
PTS_ALLOW_21_27 = StatType(key="PTS ALLOW 21-27", score=0.0)
PTS_ALLOW_28_34 = StatType(key="PTS ALLOW 28-34", score=-1.0)
PTS_ALLOW_35_ = StatType(key="PTS ALLOW 35+", score=-4.0)
TEAM_WIN = StatType(key="TEAM WIN", score=5.0)
ST_TD = StatType(key="ST TD", score=6.0)


NFLVERSE_STAT_COL_TO_ID: dict[str, str] = {
    "passing_tds": PASS_TD.key,
    "pasing_yards": PASS_YD.key,
    "passing_2pt_conversions": TWO_PT.key,
    "sack_fumbles_lost": FUM_LOST.key,
    "interceptions": PASS_INT.key,
    "rushing_tds": RUSH_TD.key,
    "rushing_yards": RUSH_YD.key,
    "rushing_2pt_conversions": TWO_PT.key,
    "rushing_fumbles_lost": FUM_LOST.key,
    "receptions": RECEPTION.key,
    "receiving_tds": REC_TD.key,
    "receiving_yards": REC_YD.key,
    "receiving_2pt_conversions": TWO_PT.key,
    "receiving_fumbles_lost": FUM_LOST.key,
    "special_teams_tds": ST_TD.key,
    "pat_made": XP.key,
    "fg_made_0_19": FG_0_49.key,
    "fg_made_20_29": FG_0_49.key,
    "fg_made_30_39": FG_0_49.key,
    "fg_made_40_49": FG_0_49.key,
    "fg_made_50_59": FG_50_.key,
    "fg_made_60_": FG_50_.key,
    "def_sacks": SACK.key,
    "def_interceptions": DEF_INT.key,
    "def_tds": DEF_TD.key,
    "def_fumble_recovery_opp": FUM_REC.key,
    "def_safety": SAFETY.key,
}

NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK = {
    19: 1,
    20: 2,
    21: 3,
    22: 4,
}


def add_stats_from_player_df_to_stat_map(df: pd.DataFrame, stat_map):
    df_playoffs = df[df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())]
    df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
    for week_player_id_tuple, row in df_playoffs.set_index(["week", "player_id"]).iterrows():
        if isinstance(week_player_id_tuple, tuple):
            week, player_id = week_player_id_tuple
        else:
            # this won't happen but makes mypy happy
            continue
        player_stats: dict[str, float] = {}
        for k, v in row.to_dict().items():
            if k in NFLVERSE_STAT_COL_TO_ID:
                if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
                    player_stats[mapped_k] += v
                else:
                    player_stats[mapped_k] = v

        if player_id not in stat_map[week]:
            stat_map[week][player_id] = player_stats
        else:
            stat_map[week][player_id].update(player_stats)


def add_stats_from_team_def_df_to_stat_map(df: pd.DataFrame, stat_map):
    short_team_names_to_player_id = {t.rosters_short_name: p for t, p in PLAYOFF_TEAM_DEF_PLAYER}
    df_playoffs = df[
        (df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys()) & df.team.isin(short_team_names_to_player_id.keys()))
    ]
    df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])

    for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
        if isinstance(week_team_tuple, tuple):
            week, team = week_team_tuple
        else:
            # this won't happen but makes mypy happy
            continue
        player_stats: dict[str, float] = {}
        player_id = short_team_names_to_player_id[team]
        for k, v in row.to_dict().items():
            if k in NFLVERSE_STAT_COL_TO_ID:
                if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
                    player_stats[mapped_k] += v
                else:
                    player_stats[mapped_k] = v

        if player_id not in stat_map[week]:
            stat_map[week][player_id] = player_stats
        else:
            stat_map[week][player_id].update(player_stats)


def assemble_nflverse_stats() -> dict[int, dict[str, dict[str, float]]]:
    # map week -> player_id -> stat_key -> stat value
    stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}

    df_player_stats = get_player_stats()
    df_kicking_stats = get_player_kicking_stats()
    df_def_stats = get_team_defense_stats()

    add_stats_from_player_df_to_stat_map(df_player_stats, stat_map)
    add_stats_from_player_df_to_stat_map(df_kicking_stats, stat_map)
    add_stats_from_team_def_df_to_stat_map(df_def_stats, stat_map)

    return stat_map


if __name__ == "__main__":
    from queries.nflverse.github_data import load_assets

    load_assets()
    assemble_nflverse_stats()