File size: 27,566 Bytes
9ec1831 8aedeba 9ec1831 8aedeba 1bb1936 9ec1831 e6aafd7 f81bfa4 7181bcd f81bfa4 63e7059 f81bfa4 f27cc58 eeb8c5f 9ec1831 f81bfa4 9ec1831 a323d54 468632c 9ec1831 0425b22 9ec1831 1bdce55 0425b22 1bdce55 0425b22 9ec1831 4a5fbf9 0425b22 9ec1831 0425b22 9ec1831 0425b22 9ec1831 17f905b 9ec1831 4a5fbf9 9ec1831 c71d5f0 9ec1831 f81bfa4 9ec1831 f81bfa4 9ec1831 183562b f81bfa4 183562b f81bfa4 183562b 1bb1936 9ec1831 183562b 9ec1831 1bb1936 a5bb5a0 8648544 fe1cd2c 8aedeba 1487d7c 8aedeba 7730451 4a5fbf9 7730451 1487d7c 8aa2333 8aedeba 73408d5 5681b11 8648544 5681b11 73408d5 5681b11 8aedeba ed6c02b 6e09b6a ed6c02b 8aedeba e6aafd7 8aedeba 33f3ba9 7730451 9ac79a9 1487d7c 9ac79a9 8aa2333 9ac79a9 8aa2333 7730451 9ac79a9 7730451 8aedeba 8aa2333 1487d7c f81bfa4 5325a29 8aa2333 f81bfa4 1487d7c 07c9a43 4d036d6 8aa2333 1487d7c 8aa2333 8aedeba a42b348 a35d669 55a45e7 a42b348 55a45e7 a42b348 0045f00 6d8b23b 0045f00 6d8b23b 0045f00 21e8914 0045f00 a42b348 8aedeba 1bb1936 8aedeba e6aafd7 8aa2333 e6aafd7 1bb1936 f81bfa4 656be95 8648544 656be95 f81bfa4 7181bcd 656be95 72c8544 656be95 7181bcd f81bfa4 468632c 1bb1936 6b5ee7e e014315 1bb1936 eeb8c5f 5e1c682 1bb1936 1bdce55 468632c 1bdce55 63e7059 f27cc58 63e7059 f27cc58 63e7059 e014315 63e7059 e014315 63e7059 e014315 63e7059 e014315 63e7059 e014315 63e7059 f27cc58 6b5ee7e f27cc58 63e7059 f27cc58 63e7059 f27cc58 63e7059 e014315 63e7059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
from dataclasses import dataclass
import json
import pandas as pd
import requests
import streamlit as st
from domain.constants import SEASON
from domain.playoffs import (
SHORT_TEAM_NAMES_TO_DEFENSE_PLAYER_ID,
DEFENSE_PLAYER_ID_TO_ROSTER_TEAM_NAMES,
ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID,
PLAYOFF_TEAM_DEF_PLAYER,
CURRENT_PLAYOFF_WEEK,
)
from domain import teams
from login import get_stat_overrides
from queries.nflverse.github_data import get_player_kicking_stats, get_player_stats, get_team_defense_stats
from queries.pfr.league_schedule import get_season_game_map
STAT_CACHE_SECONDS = 60
@dataclass
class StatType:
key: str
score: float
stat_type: str = "Offense"
def __post_init__(self):
STAT_KEY_MAP[self.key] = self
STAT_TYPE_KEY_MAP[self.stat_type][self.key] = self
STAT_KEY_MAP: dict[str, StatType] = {}
STAT_TYPE_KEY_MAP: dict[str, dict[str, StatType]] = {
"Offense": {},
"Kicking": {},
"Defense / Special Teams": {},
}
RUSH_TD = StatType(key="RUSH TD", score=6.0)
REC_TD = StatType(key="REC TD", score=6.0)
OFF_FUM_TD = StatType(key="OFF FUM TD", score=6.0)
PASS_TD = StatType(key="PASS TD", score=4.0)
FG_0_39 = StatType(key="FG 0-39", score=3.0, stat_type="Kicking")
FG_40_49 = StatType(key="FG 40-49", score=4.0, stat_type="Kicking")
FG_50_ = StatType(key="FG 50+", score=5.0, stat_type="Kicking")
TWO_PT = StatType(key="2 PT", score=2.0)
RECEPTION = StatType(key="REC", score=1.0)
RUSH_YD = StatType(key="RUSH YD", score=0.1)
REC_YD = StatType(key="REC YD", score=0.1)
PASS_YD = StatType(key="PASS YD", score=0.04)
XP = StatType(key="XP", score=1.0, stat_type="Kicking")
FUM_LOST = StatType(key="FUM LOST", score=-2.0)
PASS_INT = StatType(key="PASS INT", score=-2.0)
RET_TD = StatType(key="RET TD", score=6.0, stat_type="Defense / Special Teams")
DEF_TD = StatType(key="DEF TD", score=6.0, stat_type="Defense / Special Teams")
DEF_INT = StatType(key="DEF INT", score=2.0, stat_type="Defense / Special Teams")
FUM_REC = StatType(key="FUM REC", score=2.0, stat_type="Defense / Special Teams")
SAFETY = StatType(key="SAFETY", score=2.0, stat_type="Defense / Special Teams")
SACK = StatType(key="SACK", score=1.0, stat_type="Defense / Special Teams")
PTS_ALLOW_0 = StatType(key="PTS 0", score=10.0, stat_type="Defense / Special Teams")
PTS_ALLOW_1_6 = StatType(key="PTS 1-6", score=7.0, stat_type="Defense / Special Teams")
PTS_ALLOW_7_13 = StatType(key="PTS 7-13", score=4.0, stat_type="Defense / Special Teams")
PTS_ALLOW_14_20 = StatType(key="PTS 14-20", score=1.0, stat_type="Defense / Special Teams")
PTS_ALLOW_21_27 = StatType(key="PTS 21-27", score=0.0, stat_type="Defense / Special Teams")
PTS_ALLOW_28_34 = StatType(key="PTS 28-34", score=-1.0, stat_type="Defense / Special Teams")
PTS_ALLOW_35_ = StatType(key="PTS 35+", score=-4.0, stat_type="Defense / Special Teams")
TEAM_WIN = StatType(key="TEAM WIN", score=5.0, stat_type="Defense / Special Teams")
ST_TD = StatType(key="ST TD", score=6.0, stat_type="Defense / Special Teams")
NFLVERSE_STAT_COL_TO_ID: dict[str, str] = {
"passing_tds": PASS_TD.key,
"passing_yards": PASS_YD.key,
"passing_2pt_conversions": TWO_PT.key,
"sack_fumbles_lost": FUM_LOST.key,
"interceptions": PASS_INT.key,
"rushing_tds": RUSH_TD.key,
"rushing_yards": RUSH_YD.key,
"rushing_2pt_conversions": TWO_PT.key,
"rushing_fumbles_lost": FUM_LOST.key,
"receptions": RECEPTION.key,
"receiving_tds": REC_TD.key,
"receiving_yards": REC_YD.key,
"receiving_2pt_conversions": TWO_PT.key,
"receiving_fumbles_lost": FUM_LOST.key,
"special_teams_tds": ST_TD.key,
"pat_made": XP.key,
"fg_made_0_19": FG_0_39.key,
"fg_made_20_29": FG_0_39.key,
"fg_made_30_39": FG_0_39.key,
"fg_made_40_49": FG_40_49.key,
"fg_made_50_59": FG_50_.key,
"fg_made_60_": FG_50_.key,
"def_sacks": SACK.key,
"def_interceptions": DEF_INT.key,
"def_tds": DEF_TD.key,
"def_fumble_recovery_opp": FUM_REC.key,
"def_safety": SAFETY.key,
}
NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK = {
19: 1,
20: 2,
21: 3,
22: 4,
}
def add_stats_from_player_df_to_stat_map(df: pd.DataFrame, stat_map):
df_playoffs = df[df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_player_id_tuple, row in df_playoffs.set_index(["week", "player_id"]).iterrows():
if isinstance(week_player_id_tuple, tuple):
week, player_id = week_player_id_tuple
else:
# this won't happen but makes mypy happy
continue
player_stats: dict[str, float] = {}
for k, v in row.to_dict().items():
if k in NFLVERSE_STAT_COL_TO_ID:
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
if player_id not in stat_map[week]:
stat_map[week][player_id] = player_stats
else:
stat_map[week][player_id].update(player_stats)
def add_stats_from_team_def_df_to_stat_map(df: pd.DataFrame, stat_map):
df_playoffs = df[
(
df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())
& df.team.isin(ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID.keys())
)
]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
if isinstance(week_team_tuple, tuple):
week, team = week_team_tuple
else:
# this won't happen but makes mypy happy
continue
player_stats: dict[str, float] = {}
player_id = ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[team]
for k, v in row.to_dict().items():
if k in NFLVERSE_STAT_COL_TO_ID:
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
if player_id not in stat_map[week]:
stat_map[week][player_id] = player_stats
else:
stat_map[week][player_id].update(player_stats)
def add_st_stats_to_defense(df: pd.DataFrame, stat_map):
df_playoffs = df[
(
df.week.isin(NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.keys())
& df.team.isin(ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID.keys())
)
]
df_playoffs.week = df_playoffs.week.apply(lambda x: NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK[x])
for week_team_tuple, row in df_playoffs.set_index(["week", "team"]).iterrows():
if isinstance(week_team_tuple, tuple):
week, team = week_team_tuple
else:
# this won't happen but makes mypy happy
continue
player_id = ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[team]
player_stats: dict[str, float] = stat_map[week].get(player_id, {})
# special teams td update only
for k, v in row.to_dict().items():
if k == "special_teams_tds":
if (mapped_k := NFLVERSE_STAT_COL_TO_ID[k]) in player_stats:
player_stats[mapped_k] += v
else:
player_stats[mapped_k] = v
stat_map[week][player_id] = player_stats
# 24 hour cache
@st.cache_data(ttl=60 * 60 * 24)
def assemble_nflverse_stats() -> dict[int, dict[str, dict[str, float]]]:
# map week -> player_id -> stat_key -> stat value
stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
df_player_stats = get_player_stats()
df_kicking_stats = get_player_kicking_stats()
df_def_stats = get_team_defense_stats()
add_stats_from_player_df_to_stat_map(df_player_stats, stat_map)
add_stats_from_player_df_to_stat_map(df_kicking_stats, stat_map)
add_stats_from_team_def_df_to_stat_map(df_def_stats, stat_map)
add_st_stats_to_defense(df_player_stats, stat_map)
return stat_map
def get_live_stats() -> dict[int, dict[str, dict[str, float]]]:
try:
return get_yahoo_stats()
except Exception as e:
print(f"Failed to get yahoo live stats: {str(e)}")
return {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
YAHOO_TO_STAT_MAP: dict[str, dict[str, str]] = {
"PASSING": {
"PASSING_YARDS": PASS_YD.key,
"PASSING_TOUCHDOWNS": PASS_TD.key,
"PASSING_INTERCEPTIONS": PASS_INT.key,
"FUMBLES_LOST": FUM_LOST.key,
},
"RUSHING": {
"RUSHING_TOUCHDOWNS": RUSH_TD.key,
"FUMBLES_LOST": FUM_LOST.key,
"RUSHING_YARDS": RUSH_YD.key,
},
"RECEIVING": {
"RECEPTIONS": RECEPTION.key,
"RECEIVING_YARDS": REC_YD.key,
"RECEIVING_TOUCHDOWNS": REC_TD.key,
"FUMBLES_LOST": FUM_LOST.key,
},
"KICKING": {
"FIELD_GOALS_MADE_0_19": FG_0_39.key,
"FIELD_GOALS_MADE_20_29": FG_0_39.key,
"FIELD_GOALS_MADE_30_39": FG_0_39.key,
"FIELD_GOALS_MADE_40_49": FG_40_49.key,
"FIELD_GOALS_MADE_50_PLUS": FG_50_.key,
"EXTRA_POINTS_MADE": XP.key,
},
"DEFENSE": {
"SACKS": SACK.key,
"INTERCEPTIONS_FORCED": DEF_INT.key,
"INTERCEPTION_RETURN_TOUCHDOWNS": DEF_TD.key,
"FORCED_FUMBLES": FUM_REC.key,
"FUMBLE_RETURN_TOUCHDOWNS": DEF_TD.key,
"SAFETIES": SAFETY.key,
},
"RETURNING": {
"KICKOFF_RETURN_TOUCHDOWNS": ST_TD.key,
"PUNT_RETURN_TOUCHDOWNS": ST_TD.key,
},
}
def get_yahoo_id_map() -> dict[str, str]:
try:
teams_included = [x.id_map_short_name for x, _ in PLAYOFF_TEAM_DEF_PLAYER]
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv")
df = df[(df["yahoo_id"].notna() & df["gsis_id"].notna() & df["team"].isin(teams_included))]
df["yahoo_id"] = df["yahoo_id"].astype(int).astype(str)
return df.set_index("yahoo_id")["gsis_id"].to_dict()
except Exception as e:
print(f"Failed to get yahoo id map: {str(e)}")
return {}
YAHOO_PLAYER_ID_MAP = get_yahoo_id_map()
YAHOO_WEEK_MAP = {
19: 1,
20: 2,
21: 3,
22: 4,
}
def add_yahoo_stat_type_to_stat_map(
stats_object, yahoo_stat_type: str, stat_map: dict[int, dict[str, dict[str, float]]]
):
assert yahoo_stat_type in YAHOO_TO_STAT_MAP
nfl_object = stats_object["nfl"]["200"][f"{SEASON}"]
for raw_week, week_dict in nfl_object.items():
week = YAHOO_WEEK_MAP[int(raw_week)]
if week not in stat_map:
stat_map[week] = {}
season_type = "REGULAR_SEASON" if int(raw_week) < 19 else "POSTSEASON"
if yahoo_stat_type == "KICKING":
week_leaders = week_dict[season_type][""]["FIELD_GOALS_MADE"]["leagues"][0]["leagueWeeks"][0]["leaders"]
elif yahoo_stat_type == "DEFENSE":
week_leaders = week_dict[season_type][""]["TOTAL_TACKLES"]["leagues"][0]["leagueWeeks"][0]["leaders"]
elif yahoo_stat_type == "RETURNING":
week_leaders = week_dict[season_type][""]["RETURN_YARDS_PER_KICKOFF"]["leagues"][0]["leagueWeeks"][0][
"leaders"
]
else:
week_leaders = week_dict[season_type][""][f"{yahoo_stat_type}_YARDS"]["leagues"][0]["leagueWeeks"][0][
"leaders"
]
for player in week_leaders:
def_player_id = ""
player_id = ""
if yahoo_stat_type == "DEFENSE":
def_player_id = SHORT_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[player["player"]["team"]["abbreviation"]]
elif yahoo_stat_type == "RETURNING":
raw_player_id = player["player"]["playerId"].split(".")[-1]
player_id = YAHOO_PLAYER_ID_MAP.get(raw_player_id, "")
def_player_id = SHORT_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[player["player"]["team"]["abbreviation"]]
else:
raw_player_id = player["player"]["playerId"].split(".")[-1]
player_id = YAHOO_PLAYER_ID_MAP.get(raw_player_id, "")
map_stats_to_week_player_id(player_id, week, player, stat_map, yahoo_stat_type)
map_stats_to_week_player_id(def_player_id, week, player, stat_map, yahoo_stat_type)
def map_stats_to_week_player_id(player_id: str, week: int, player, stat_map, yahoo_stat_type):
if not player_id:
return
if player_id not in stat_map[week]:
stat_map[week][player_id] = {}
stats = player["stats"]
for stat in stats:
if stat_key := YAHOO_TO_STAT_MAP[yahoo_stat_type].get(stat["statId"]):
if stat_key in stat_map[week][player_id]:
stat_map[week][player_id][stat_key] += float(stat["value"] or 0.0)
else:
stat_map[week][player_id][stat_key] = float(stat["value"] or 0.0)
# else:
# # remove after mapping all intended
# stat_map[week][player_id][stat["statId"]] = stat["value"]
def get_yahoo_stat_json_obj():
url = "https://sports.yahoo.com/nfl/stats/weekly/?selectedTable=0"
request = requests.get(url)
request_content_str = request.text
start_str = """root.App.main = """
end_str = """;\n}(this));"""
start_slice_pos = request_content_str.find(start_str) + len(start_str)
first_slice = request_content_str[start_slice_pos:]
end_slice_pos = first_slice.find(end_str)
dom_str = first_slice[:end_slice_pos]
dom_json = json.loads(dom_str)
return dom_json
def get_yahoo_schedule() -> dict[int, dict[str, dict[str, str | int | pd.Timestamp]]]:
schedule_map: dict[int, dict[str, dict[str, str | int | pd.Timestamp]]] = {}
dom_json = get_yahoo_stat_json_obj()
team_id_to_abbr = {}
teams_json = dom_json["context"]["dispatcher"]["stores"]["TeamsStore"]["teams"]
for team_key, team_dict in teams_json.items():
if not team_key.split(".")[0] == "nfl":
continue
team_id_to_abbr[team_dict["team_id"]] = team_dict["abbr"]
games_json = dom_json["context"]["dispatcher"]["stores"]["GamesStore"]["games"]
for game_id, game in games_json.items():
if not game_id.split(".")[0] == "nfl":
continue
try:
# sometimes yahoo has issue where home_team_id is ''
away_team = team_id_to_abbr[game["away_team_id"]]
home_team = team_id_to_abbr[game["home_team_id"]]
except KeyError:
continue
if "week_number" not in game:
continue
week = YAHOO_WEEK_MAP[int(game["week_number"])]
if week not in schedule_map:
schedule_map[week] = {}
home_team_map: dict[str, str | int | pd.Timestamp] = {}
away_team_map: dict[str, str | int | pd.Timestamp] = {}
if game["status_type"] != "pregame":
away_score = int(game["total_away_points"] or 0)
home_score = int(game["total_home_points"] or 0)
home_team_map.update(
{
"score": home_score,
"opponent_score": away_score,
"opponent": away_team,
}
)
away_team_map.update(
{
"score": away_score,
"opponent_score": home_score,
"opponent": home_team,
}
)
if game["status_type"] == "in_progress":
clock_status = game["status_display_name"]
if clock_status:
home_team_map.update({"status": clock_status})
away_team_map.update({"status": clock_status})
elif game["status_type"] == "final":
home_team_win = home_score > away_score
home_status = "Win" if home_team_win else "Loss"
away_status = "Loss" if home_team_win else "Win"
home_team_map.update({"status": home_status})
away_team_map.update({"status": away_status})
schedule_map[week][home_team] = home_team_map
schedule_map[week][away_team] = away_team_map
return schedule_map
def get_yahoo_stats() -> dict[int, dict[str, dict[str, float]]]:
dom_json = get_yahoo_stat_json_obj()
stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
stats_json = dom_json["context"]["dispatcher"]["stores"]["GraphStatsStore"]
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballPassing"], "PASSING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballRushing"], "RUSHING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballReceiving"], "RECEIVING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballKicking"], "KICKING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballReturns"], "RETURNING", stat_map)
add_yahoo_stat_type_to_stat_map(stats_json["weeklyStatsFootballDefense"], "DEFENSE", stat_map)
return stat_map
def get_live_schedule() -> dict[int, dict[str, dict[str, str | int | pd.Timestamp]]]:
try:
return get_yahoo_schedule()
except Exception as e:
print(f"Failed to get yahoo schedule: {str(e)}")
return {}
@st.cache_data(ttl=60 * 60 * 24)
def get_daily_updated_schedule() -> dict[int, dict[str, dict[str, str | int | pd.Timestamp]]]:
schedule, _ = get_season_game_map(SEASON)
return schedule
@st.cache_data(ttl=STAT_CACHE_SECONDS)
def get_schedule_with_live() -> dict[int, dict[str, dict[str, str | int | pd.Timestamp]]]:
schedule = get_live_schedule()
for week, week_live in get_daily_updated_schedule().items():
if week not in schedule:
schedule[week] = {}
for team, team_live in week_live.items():
if team not in schedule[week]:
schedule[week][team] = {}
schedule[week][team].update(team_live)
return schedule
def add_points_against_team_win_stat(stat_map: dict[int, dict[str, dict[str, float]]]):
schedule = get_schedule_with_live()
for week, week_map in stat_map.items():
for player_id in week_map.keys():
if team_short_name := DEFENSE_PLAYER_ID_TO_ROSTER_TEAM_NAMES.get(player_id):
try:
team_game = schedule[week][team_short_name]
opponent_team = str(team_game["opponent"])
opponent_player_id = ROSTER_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[opponent_team]
opponent_def_stats = week_map[opponent_player_id]
if isinstance((opponent_score_str := team_game["opponent_score"]), pd.Timestamp):
# another case not possible but makes mypy happy
continue
opponent_score = float(opponent_score_str) # noqa
opponent_def_points_scored = (
opponent_def_stats.get(SAFETY.key, 0.0) * 2.0 + opponent_def_stats.get(DEF_TD.key, 0.0) * 6.0
)
points_allowed = opponent_score - opponent_def_points_scored
if points_allowed == 0:
stat_map[week][player_id].update({PTS_ALLOW_0.key: 1})
elif points_allowed < 7:
stat_map[week][player_id].update({PTS_ALLOW_1_6.key: 1})
elif points_allowed < 14:
stat_map[week][player_id].update({PTS_ALLOW_7_13.key: 1})
elif points_allowed < 21:
stat_map[week][player_id].update({PTS_ALLOW_14_20.key: 1})
elif points_allowed < 28:
stat_map[week][player_id].update({PTS_ALLOW_21_27.key: 1})
elif points_allowed < 35:
stat_map[week][player_id].update({PTS_ALLOW_28_34.key: 1})
else:
stat_map[week][player_id].update({PTS_ALLOW_35_.key: 1})
# check for win
if team_game["status"] == "Win":
stat_map[week][player_id].update({TEAM_WIN.key: 1})
except Exception:
continue
@st.cache_data(ttl=STAT_CACHE_SECONDS)
def get_stats_map() -> dict[int, dict[str, dict[str, float]]]:
# use live stats if available
stat_map = get_live_stats()
# try live better stats
try:
stat_map[CURRENT_PLAYOFF_WEEK] = get_live_yahoo_stats_from_txt()[CURRENT_PLAYOFF_WEEK]
except Exception as e:
print(f"Failed to get yahoo live backup method: {str(e)}")
# use more permanent nflverse stats over live
nflverse_stats = assemble_nflverse_stats()
# we overwrite the live stats with nflverse stats if they exist for the same player
for week, week_stats in nflverse_stats.items():
for player_id, player_stats in week_stats.items():
stat_map[week][player_id] = player_stats
stat_overrides = get_stat_overrides()
# for stat overrides, override at the stat level
for week, week_stats in stat_overrides.items():
for player_id, player_stats in week_stats.items():
for stat_key, stat_value in player_stats.items():
if player_id not in stat_map[week]:
stat_map[week][player_id] = {}
stat_map[week][player_id][stat_key] = stat_value
add_points_against_team_win_stat(stat_map)
return stat_map
@st.cache_data(ttl=STAT_CACHE_SECONDS)
def get_scores_map() -> dict[int, dict[str, float]]:
scores_map: dict[int, dict[str, float]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
stat_map = get_stats_map()
for week, week_stats in stat_map.items():
for player_id, player_stats in week_stats.items():
score = 0.0
for stat_key, stat_value in player_stats.items():
stat_type = STAT_KEY_MAP[stat_key]
score += stat_type.score * stat_value
scores_map[week][player_id] = score
return scores_map
LIVE_YAHOO_STAT_COLUMNS = {
"f": [
"f-" + "unknown01",
SACK.key,
DEF_INT.key,
FUM_REC.key,
DEF_TD.key,
SAFETY.key,
"f-" + "unknown07",
"f-" + "unknown08",
RET_TD.key,
"f-" + "unknown10",
"f-" + "unknown11",
"f-" + "unknown12",
"f-" + "unknown13",
"f-" + "unknown14",
"f-" + "unknown15",
"f-" + "unknown16",
],
"k": [
FG_0_39.key,
FG_0_39.key,
FG_0_39.key,
FG_40_49.key,
FG_50_.key,
"k-" + "unknown06",
"k-" + "unknown07",
"k-" + "unknown08",
"k-" + "unknown09",
"k-" + "unknown10",
XP.key,
"k-" + "unknown12",
"k-" + "unknown13",
"k-" + "unknown14",
"k-" + "unknown15",
"k-" + "unknown16",
],
"n": [
"n-" + "unknown01",
"n-" + "unknown02",
"n-" + "unknown03",
"n-" + "unknown04",
],
"o": [
"o-" + "unknown01",
"o-" + "unknown02",
"o-" + "unknown03",
],
"q": [
"q" + "unknown01",
"q" + "unknown02",
"q" + "unknown03",
PASS_YD.key,
PASS_TD.key,
PASS_INT.key,
"q" + "unknown07",
"q" + "unknown08",
"q" + "unknown09",
"q" + "unknown10",
"q" + "unknown11",
"q" + "unknown12",
],
"r": [
"r-" + "unknown01",
RUSH_YD.key,
RUSH_TD.key,
"r-" + "unknown04",
"r-" + "unknown05",
"r-" + "unknown06",
"r-" + "unknown07",
],
"t": [
"t-" + "unknown01",
"t-" + "unknown02",
"t-" + "unknown03",
"t-" + "unknown04",
"t-" + "unknown05",
"t-" + "unknown06",
"t-" + "unknown07",
"t-" + "unknown08",
"t-" + "unknown09",
"t-" + "unknown10",
"t-" + "unknown11",
"t-" + "unknown12",
"t-" + "unknown13",
"t-" + "unknown14",
"t-" + "unknown15",
"t-" + "unknown16",
"t-" + "unknown17",
"t-" + "unknown18",
"t-" + "unknown19",
"t-" + "unknown20",
"t-" + "unknown21",
"t-" + "unknown22",
"t-" + "unknown23",
"t-" + "unknown24",
"t-" + "unknown25",
],
"w": [
RECEPTION.key,
REC_YD.key,
REC_TD.key,
"w-" + "unknown04",
"w-" + "unknown05",
"w-" + "unknown06",
"w-" + "unknown07",
"w-" + "unknown08",
],
"x": [
"x-" + "unknown01",
"x-" + "unknown02",
"x-" + "unknown03",
"x-" + "unknown04",
"x-" + "unknown05",
],
"z": [
"z-" + "unknown01",
"z-" + "unknown02",
"z-" + "unknown03",
"z-" + "unknown04",
"z-" + "unknown05",
"z-" + "unknown06",
"z-" + "unknown07",
"z-" + "unknown08",
"z-" + "unknown09",
"z-" + "unknown10",
"z-" + "unknown11",
"z-" + "unknown12",
"z-" + "unknown13",
],
}
YAHOO_TEAM_ID_MAP = {
"2": teams.buffalo_bills.team_short_name,
"12": teams.kansas_city_chiefs.team_short_name,
"21": teams.philadelphia_eagles.team_short_name,
"28": teams.washington_football_team.team_short_name,
}
YAHOO_TEAM_TO_DEF_PLAYER = {k: SHORT_TEAM_NAMES_TO_DEFENSE_PLAYER_ID[v] for k, v in YAHOO_TEAM_ID_MAP.items()}
YAHOO_PLAYER_ID_MAP_WITH_DEF = {**YAHOO_PLAYER_ID_MAP, **YAHOO_TEAM_TO_DEF_PLAYER}
def process_stat_line(stat_line: str) -> dict[str, dict[str, float]]:
remove_unknown = True
values_list = stat_line.split("|")
stat_type = values_list.pop(0)
column_list = LIVE_YAHOO_STAT_COLUMNS.get(stat_type)
if not column_list:
return {}
yahoo_player_id = values_list.pop(0)
player_id = YAHOO_PLAYER_ID_MAP_WITH_DEF.get(yahoo_player_id, "")
if not player_id:
print(f"Player id not found {yahoo_player_id}")
assert len(values_list) == len(column_list)
stat_map: dict[str, float] = {}
for stat_key, stat_val in zip(column_list, values_list):
if remove_unknown and "unknown" in stat_key:
continue
if stat_val:
if stat_key in stat_map:
stat_map[stat_key] += int(stat_val)
else:
stat_map[stat_key] = int(stat_val)
return {player_id: stat_map}
def get_live_yahoo_stats_from_txt() -> dict[int, dict[str, dict[str, float]]]:
# new method using stats.txt and interpreting columnar data file
req = requests.get("https://relay-stream.sports.yahoo.com/nfl/stats.txt")
stats_text = req.text
stat_map: dict[int, dict[str, dict[str, float]]] = {w: {} for w in NFLVERSE_STAT_WEEK_TO_PLAYOFF_WEEK.values()}
current_week_stat_map: dict[str, dict[str, float]] = {}
for stat_line in stats_text.split("\n"):
parsed_stat_line = process_stat_line(stat_line)
for k, v in parsed_stat_line.items():
if k in current_week_stat_map:
current_week_stat_map[k].update(v)
else:
current_week_stat_map.update(parsed_stat_line)
stat_map[CURRENT_PLAYOFF_WEEK] = current_week_stat_map
return stat_map
|