Jon Solow
Use actual week 19 but map 18 for bye week players
dc974d8
raw
history blame
4.41 kB
from dataclasses import dataclass
import pandas as pd
import streamlit as st
from domain.constants import SEASON
from domain.playoffs import (
PLAYOFF_WEEK_TO_NAME,
ROSTER_WEEK_TO_PLAYOFF_WEEK,
PLAYOFFS_TEAMS,
PLAYOFF_TEAM_DEF_PLAYER,
)
from domain.teams import SCHEDULE_NAME_TO_PFR_NAME_MAP
from queries.nflverse.github_data import get_weekly_rosters
from queries.pfr.league_schedule import get_season_time_map
@dataclass
class PlayerOption:
full_name: str
gsis_id: str
headshot_url: str
position: str
team: str
gametime: pd.Timestamp | None
week: int | None
@classmethod
def from_series(cls, input_series):
return cls(
full_name=input_series.full_name,
gsis_id=input_series.gsis_id,
headshot_url=input_series.headshot_url,
position=input_series.position,
team=input_series.team,
gametime=input_series.gametime,
week=int(input_series.week),
)
@classmethod
def empty_player(cls, week: int | None = None):
return cls(full_name="", gsis_id="", headshot_url="", position="", team="", gametime=None, week=week)
def is_locked(self):
if not self.gametime:
return False
else:
date_compare = (pd.Timestamp.now(tz="America/New_York")) + pd.Timedelta(days=0, hours=0)
return self.gametime < date_compare
def initialize_empty_options_map() -> dict[str, dict[int, list[PlayerOption]]]:
options_map: dict[str, dict[int, list[PlayerOption]]] = {}
for pos in ["QB", "RB", "WR", "TE", "K", "DEF"]:
options_map[pos] = {}
for week in PLAYOFF_WEEK_TO_NAME.keys():
options_map[pos][int(week)] = [PlayerOption.empty_player(week=week)]
return options_map
def player_options_from_df(df_options) -> dict[str, dict[int, list[PlayerOption]]]:
options_map = initialize_empty_options_map()
for pos, pos_week_map in options_map.items():
for week in pos_week_map.keys():
df_pos_week = df_options[((df_options.week == week) & (df_options.position == pos))]
if len(df_pos_week) > 0:
player_options_list = df_pos_week.apply(PlayerOption.from_series, axis=1).tolist()
options_map[pos][int(week)].extend(player_options_list)
return options_map
def modify_defensive_players_to_be_team_defense(df_options):
for team, player_id in PLAYOFF_TEAM_DEF_PLAYER:
if player_id in df_options.gsis_id.values:
df_options.loc[df_options.gsis_id == player_id, "position"] = "DEF"
df_options.loc[df_options.gsis_id == player_id, "full_name"] = team.team_name
def display_player(player_opt: PlayerOption | None):
if player_opt:
if player_opt.headshot_url:
st.image(player_opt.headshot_url)
if player_opt.full_name:
st.write(player_opt.full_name)
st.write(f"{player_opt.team} - {player_opt.gametime.strftime('%-m/%-d %-I:%M %p')}")
@st.cache_data(ttl=60 * 60 * 24)
def load_options():
df_rosters = get_weekly_rosters()
# get game schedules
week_game_times = get_season_time_map(SEASON)
latest_game_time_defaults = {k: max(v.values()) for k, v in week_game_times.items() if v}
# sort
sort_by_cols = ["position", "fantasy_points", "week"]
df_rosters.sort_values(sort_by_cols, ascending=False, inplace=True)
# filter data from non-playoffs
df_rosters = df_rosters[df_rosters.week.isin(ROSTER_WEEK_TO_PLAYOFF_WEEK.keys())]
df_rosters["week"] = df_rosters["week"].map(ROSTER_WEEK_TO_PLAYOFF_WEEK)
# Filter out duplicates which occur for week 1 (bye players come from week 18)
df_rosters = df_rosters.drop_duplicates(subset=["gsis_id", "week"])
# set gametime
if len(df_rosters) == 0:
return initialize_empty_options_map()
df_rosters["gametime"] = df_rosters.apply(
lambda x: week_game_times.get(x.week, {}).get(
SCHEDULE_NAME_TO_PFR_NAME_MAP[x.team], latest_game_time_defaults.get(x.week, None)
),
axis=1,
)
df_rosters["in_playoffs"] = df_rosters.apply(lambda x: x.team in PLAYOFFS_TEAMS[x.week], axis=1)
df_rosters = df_rosters[df_rosters.in_playoffs]
modify_defensive_players_to_be_team_defense(df_rosters)
player_options = player_options_from_df(df_rosters)
return player_options