Spaces:
Runtime error
Runtime error
File size: 1,702 Bytes
0d9f09c 511c7b4 0d9f09c ba4b027 0d9f09c ba4b027 0d9f09c d043662 511c7b4 d043662 0d9f09c d043662 0d9f09c c049bdf d043662 aa4c24f 3a35f81 a2ceada 3a35f81 c049bdf 511c7b4 c049bdf 0d9f09c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import openai
from t2a import text_to_audio
import joblib
from sentence_transformers import SentenceTransformer
import numpy as np
import os
reg = joblib.load('text_reg.joblib')
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
finetune = "davinci:ft-personal:autodrummer-v5-2022-11-04-22-34-07"
def get_note_text(prompt):
prompt = prompt + " ->"
# get completion from finetune
response = openai.Completion.create(
engine=finetune,
prompt=prompt,
temperature=0.5,
max_tokens=200,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["###"]
)
return response.choices[0].text.strip()
def get_drummer_output(prompt, tempo):
openai.api_key = os.environ['key']
if tempo == "fast":
tempo = 138
elif tempo == "slow":
tempo = 100
note_text = get_note_text(prompt)
# note_text = note_text + " " + note_text
# prompt_enc = model.encode([prompt])
# bpm = int(reg.predict(prompt_enc)[0]) + 20
audio = text_to_audio(note_text, tempo)
audio = np.array(audio.get_array_of_samples(), dtype=np.float32)
return (96000, audio)
iface = gr.Interface(
fn=get_drummer_output,
inputs=[
"text",
gr.Radio(["fast", "slow"], label="Tempo", default="fast"),
],
examples=[
["hiphop groove 808", "fast"],
["rock metal", "fast"],
["disco funk", "fast"],
],
outputs="audio",
title='Autodrummer',
description="Stable Diffusion for drum beats. Type in a genre and some descriptors (e.g., 'hiphop groove 808') to the prompt box and get a drum beat in that genre"
)
iface.launch() |