Starchat_Saturdays / dialogues.py
jsr90's picture
Duplicate from Saturdays/Starchat_Saturdays
4e392ea
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
from huggingface_hub import ModelHubMixin, hf_hub_download
# Generic variable that is either ModelHubMixin or a subclass thereof
T = TypeVar("T", bound="ModelHubMixin")
TEMPLATE_FILENAME = "dialogue_template.json"
IGNORE_INDEX = -100
@dataclass
class DialogueTemplate(ModelHubMixin):
"""Converts all turns of a dialogue between a user and assistant to a standardized format.
Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py)
"""
system: str
messages: List[Dict[str, str]] = None
system_token: str = "<|system|>"
user_token: str = "<|user|>"
assistant_token: str = "<|assistant|>"
end_token: str = "<|end|>"
def get_training_prompt(self) -> str:
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
return prompt
def get_inference_prompt(self) -> str:
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
prompt += self.assistant_token
return prompt
def get_dialogue(self):
"""Helper function to format the messages as an easy-to-read dialogue."""
prompt = ""
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += "\n\nHuman: " + message["content"]
else:
prompt += "\n\nAssistant: " + message["content"]
return prompt
def get_special_tokens(self) -> List[str]:
return [self.system_token, self.user_token, self.assistant_token, self.end_token]
def copy(self):
return DialogueTemplate(
system=self.system,
messages=self.messages,
system_token=self.system_token,
user_token=self.user_token,
assistant_token=self.assistant_token,
end_token=self.end_token,
)
def to_dict(self) -> Dict[str, Any]:
return {k: v for k, v in asdict(self).items()}
@classmethod
def from_dict(cls, data):
return DialogueTemplate(
system=data["system"] if "system" in data else "",
messages=data["messages"] if "messages" in data else None,
system_token=data["system_token"] if "system_token" in data else "<|system|>",
user_token=data["user_token"] if "user_token" in data else "<|user|>",
assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>",
end_token=data["end_token"] if "end_token" in data else "<|end|>",
)
def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True)
with open(save_directory / "dialogue_template.json", "w") as f:
json.dump(self.to_dict(), f, indent=2)
@classmethod
def _from_pretrained(
cls: Type[T],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
) -> T:
"""Loads the dialogue template from a local directory or the Huggingface Hub.
Args:
model_id (`str`):
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
resume_download (`bool`, *optional*, defaults to `False`):
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs:
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
"""
if os.path.isdir(model_id): # Can either be a local directory
print("Loading dialogue template from local directory")
template_file = os.path.join(model_id, TEMPLATE_FILENAME)
else: # Or a template on the Hub
template_file = hf_hub_download( # Download from the hub, passing same input args
repo_id=model_id,
filename=TEMPLATE_FILENAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
# Load template
with open(template_file, "r") as f:
data = json.load(f)
return cls.from_dict(data=data)
# A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
default_template = DialogueTemplate(
system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.",
)
# OpenAI and OpenAssistant train on few to no system messages.
# TODO: consider defining this as the `default` template
no_system_template = DialogueTemplate(
system="",
)
alpaca_template = DialogueTemplate(
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
user_token="### Instruction:",
assistant_token="### Response:",
)
SUPPORTED_DIALOGUE_TEMPLATES = {
"default": default_template,
"no_system": no_system_template,
"alpaca": alpaca_template,
}
def get_dialogue_template(template: str) -> DialogueTemplate:
if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys():
raise ValueError(f"Template {template} is not supported!")
return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
def prepare_dialogue(example, dialogue_template, is_train=True):
"""Format example to single- or multi-turn dialogue."""
# TODO: make this simpler by just ensuring every dataset has a messages column
if "messages" in example.keys() and example["messages"] is not None:
dialogue_template.messages = example["messages"]
elif all(k in example.keys() for k in ("prompt", "completion")):
# Construct single-turn dialogue from prompt and completion
dialogue_template.messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["completion"]},
]
elif "prompt" in example.keys():
# Construct single-turn dialogue from prompt (inference only)
dialogue_template.messages = [
{"role": "user", "content": example["prompt"]},
]
else:
raise ValueError(
f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}"
)
if is_train:
example["text"] = dialogue_template.get_training_prompt()
else:
example["text"] = dialogue_template.get_inference_prompt()
return example
def mask_user_labels(tokenizer, dialogue_template, labels):
"""Masks the user turns of a dialogue from the loss"""
user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token)
assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token)
for idx, label_id in enumerate(labels):
if label_id == user_token_id:
current_idx = idx
while labels[current_idx] != assistant_token_id and current_idx < len(labels):
labels[current_idx] = IGNORE_INDEX
current_idx += 1