jstoppa's picture
Update app.py
b155bfe verified
from langgraph.graph import StateGraph
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langchain_core.runnables.graph import MermaidDrawMethod
class State(TypedDict):
messages: Annotated[list[str], add_messages]
current_step: str
def collect_info(state: State) -> dict:
print("\n--> In collect_info")
print(f"Messages before: {state['messages']}")
messages = state["messages"] + ["Information collected"]
print(f"Messages after: {messages}")
return {
"messages": messages,
"current_step": "process"
}
def process_info(state: State) -> dict:
print("\n--> In process_info")
print(f"Messages before: {state['messages']}")
messages = state["messages"] + ["Information processed"]
print(f"Messages after: {messages}")
return {
"messages": messages,
"current_step": "end"
}
# Create and setup graph
workflow = StateGraph(State)
# Add nodes
workflow.add_node("collect", collect_info)
workflow.add_node("process", process_info)
# Add edges
workflow.add_edge("collect", "process")
# Set entry and finish points
workflow.set_entry_point("collect")
workflow.set_finish_point("process")
app = workflow.compile()
# Run workflow
print("\nStarting workflow...")
initial_state = State(messages=["Starting"], current_step="collect")
final_state = app.invoke(initial_state)
print(f"\nFinal messages: {final_state['messages']}")
# Save the graph visualization as PNG
png_data = app.get_graph().draw_mermaid_png(draw_method=MermaidDrawMethod.API)
with open("workflow_graph.png", "wb") as f:
f.write(png_data)
print("\nGraph visualization saved as 'workflow_graph.png'")