Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from langgraph.graph import StateGraph
|
3 |
+
from typing import TypedDict, Annotated, List
|
4 |
+
from langgraph.graph.message import add_messages
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
# Initialize FastAPI app
|
8 |
+
app = FastAPI(title="LangGraph Agent API")
|
9 |
+
|
10 |
+
class State(TypedDict):
|
11 |
+
messages: Annotated[list[str], add_messages]
|
12 |
+
current_step: str
|
13 |
+
|
14 |
+
class AgentInput(BaseModel):
|
15 |
+
messages: List[str]
|
16 |
+
|
17 |
+
def collect_info(state: State) -> dict:
|
18 |
+
print("\n--> In collect_info")
|
19 |
+
print(f"Messages before: {state['messages']}")
|
20 |
+
|
21 |
+
messages = state["messages"] + ["Information collected"]
|
22 |
+
print(f"Messages after: {messages}")
|
23 |
+
|
24 |
+
return {
|
25 |
+
"messages": messages,
|
26 |
+
"current_step": "process"
|
27 |
+
}
|
28 |
+
|
29 |
+
def process_info(state: State) -> dict:
|
30 |
+
print("\n--> In process_info")
|
31 |
+
print(f"Messages before: {state['messages']}")
|
32 |
+
|
33 |
+
messages = state["messages"] + ["Information processed"]
|
34 |
+
print(f"Messages after: {messages}")
|
35 |
+
|
36 |
+
return {
|
37 |
+
"messages": messages,
|
38 |
+
"current_step": "end"
|
39 |
+
}
|
40 |
+
|
41 |
+
# Create and setup graph
|
42 |
+
workflow = StateGraph(State)
|
43 |
+
|
44 |
+
# Add nodes
|
45 |
+
workflow.add_node("collect", collect_info)
|
46 |
+
workflow.add_node("process", process_info)
|
47 |
+
|
48 |
+
# Add edges
|
49 |
+
workflow.add_edge("collect", "process")
|
50 |
+
|
51 |
+
# Set entry and finish points
|
52 |
+
workflow.set_entry_point("collect")
|
53 |
+
workflow.set_finish_point("process")
|
54 |
+
|
55 |
+
# Compile the workflow
|
56 |
+
agent = workflow.compile()
|
57 |
+
|
58 |
+
|
59 |
+
@app.post("/run-agent")
|
60 |
+
async def run_agent(input_data: AgentInput):
|
61 |
+
"""
|
62 |
+
Run the agent with the provided input messages.
|
63 |
+
"""
|
64 |
+
initial_state = State(messages=input_data.messages, current_step="collect")
|
65 |
+
final_state = agent.invoke(initial_state)
|
66 |
+
return {"messages": final_state["messages"]}
|
67 |
+
|
68 |
+
@app.get("/")
|
69 |
+
async def root():
|
70 |
+
"""
|
71 |
+
Root endpoint that returns basic API information.
|
72 |
+
"""
|
73 |
+
return {"message": "LangGraph Agent API is running", "endpoints": ["/run-agent"]}
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
import uvicorn
|
77 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|