Spaces:
Sleeping
Sleeping
File size: 16,775 Bytes
947150a c1b5e3a 87f778f cf4323e 87f778f 502fa70 cf4323e 947150a cf4323e 502fa70 cf4323e 502fa70 cf4323e 502fa70 cf4323e 502fa70 cf4323e 947150a cf4323e 947150a cf4323e cf047e8 cf4323e 947150a cf4323e c1b5e3a cf4323e c1b5e3a cf4323e c1b5e3a cf4323e c1b5e3a 87f778f 947150a 87f778f cf4323e 87f778f c1b5e3a cf047e8 502fa70 c1b5e3a cf4323e 502fa70 cf4323e 502fa70 cf4323e 502fa70 cf4323e 502fa70 cf4323e c1b5e3a 87f778f cf4323e c1b5e3a 71743f9 cf4323e 502fa70 cf4323e 87f778f cf4323e 502fa70 cf4323e 87f778f 502fa70 cf4323e 87f778f c1b5e3a 87f778f 502fa70 cf4323e cf047e8 cf4323e 87f778f 502fa70 cf4323e 87f778f 502fa70 cf4323e 87f778f 502fa70 87f778f cf4323e 87f778f 502fa70 cf4323e 87f778f cf4323e 87f778f cf4323e 502fa70 cf4323e 502fa70 87f778f cf4323e 502fa70 cf4323e 502fa70 cf4323e 87f778f cf4323e 502fa70 cf4323e 87f778f cf4323e 502fa70 cf4323e 87f778f cf4323e 502fa70 87f778f cf4323e 502fa70 cf4323e 502fa70 cf4323e 87f778f cf4323e 87f778f cf4323e 87f778f cf047e8 502fa70 87f778f 502fa70 87f778f 502fa70 87f778f c1b5e3a 87f778f cf047e8 87f778f 502fa70 87f778f 947150a 502fa70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from datasets import load_dataset
def load_transform_data():
"""
Load and transform data from a parquet file.
Returns:
pandas.DataFrame: Transformed dataframe.
"""
spaces_dataset = "jsulz/space-stats"
dataset = load_dataset(spaces_dataset)
df = dataset["train"].to_pandas()
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
df["licenses"] = df["license"].apply(
lambda x: np.array([str(x)]) if x is None else x
)
# then combine the sdk and tags columns so that their elements are together
df["sdk_tags"] = df[["sdk", "tags"]].apply(
lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
)
# Fill the NaN values with an empty string
df["emoji"] = np.where(df["emoji"].isnull(), "", df["emoji"])
# where the custom_domains column is not null, use that as the url, otherwise, use the host column
df["url"] = np.where(
df["custom_domains"].isnull(),
df["id"],
df["custom_domains"],
)
# Build up a pretty url that's clickable with the emoji
df["url"] = df[["url", "emoji"]].apply(
lambda x: (
f'<a target="_blank" href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>'
if x.iloc[0] is not None
else f'<a target="_blank" href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>'
),
axis=1,
)
# Prep the models, datasets, and licenses columns for display
df["r_models"] = [
", ".join(models) if models is not None else "" for models in df["models"]
]
df["r_sdk_tags"] = [
", ".join(sdk_tags) if sdk_tags is not None else ""
for sdk_tags in df["sdk_tags"]
]
df["r_datasets"] = [
", ".join(datasets) if datasets is not None else ""
for datasets in df["datasets"]
]
df["r_licenses"] = [
", ".join(licenses) if licenses is not None else ""
for licenses in df["licenses"]
]
return df
def filtered_df(
filtered_emojis,
filtered_likes,
filtered_author,
filtered_hardware,
filtered_tags,
filtered_models,
filtered_datasets,
space_licenses,
filtered_devmode,
):
"""
Filter the dataframe based on the given criteria.
Args:
filtered_emojis (list): List of emojis to filter the dataframe by.
filtered_likes (int): Minimum number of likes to filter the dataframe by.
filtered_author (list): List of authors to filter the dataframe by.
filtered_hardware (list): List of hardware to filter the dataframe by.
filtered_tags (list): List of tags to filter the dataframe by.
filtered_models (list): List of models to filter the dataframe by.
filtered_datasets (list): List of datasets to filter the dataframe by.
space_licenses (list): List of licenses to filter the dataframe by.
Returns:
pandas.DataFrame: Filtered dataframe with the following columns: "URL", "Likes", "Models", "Datasets", "Licenses".
"""
_df = df
if filtered_emojis:
_df = _df[_df["emoji"].isin(filtered_emojis)]
if filtered_likes:
_df = _df[_df["likes"] >= filtered_likes]
if filtered_author:
_df = _df[_df["author"].isin(filtered_author)]
if filtered_hardware:
_df = _df[_df["hardware"].isin(filtered_hardware)]
if filtered_tags:
_df = _df[
_df["sdk_tags"].apply(lambda x: any(tag in x for tag in filtered_tags))
]
if filtered_models:
_df = _df[
_df["models"].apply(
lambda x: (
any(model in x for model in filtered_models)
if x is not None
else False
)
)
]
if filtered_datasets:
_df = _df[
_df["datasets"].apply(
lambda x: (
any(dataset in x for dataset in filtered_datasets)
if x is not None
else False
)
)
]
if space_licenses:
_df = _df[
_df["licenses"].apply(
lambda x: (
any(space_license in x for space_license in space_licenses)
if x is not None
else False
)
)
]
# rename the columns names to make them more readable
_df = _df.rename(
columns={
"url": "URL",
"likes": "Likes",
"r_models": "Models",
"r_datasets": "Datasets",
"r_licenses": "Licenses",
}
)
if filtered_devmode:
_df = _df[_df["devMode"] == filtered_devmode]
return _df[["URL", "Likes", "Models", "Datasets", "Licenses"]]
def count_items(items):
"""
Count the occurrences of items and authors in a given list of items.
Parameters:
items (dataframe column): A dataframe column containing a list of items.
Returns:
tuple: A tuple containing two dictionaries. The first dictionary contains the count of each item,
and the second dictionary contains the count of each author.
"""
items = np.concatenate([arr for arr in items.values if arr is not None])
item_count = {}
item_author_count = {}
for item in items:
if item in item_count:
item_count[item] += 1
else:
item_count[item] = 1
author = item.split("/")[0]
if author in item_author_count:
item_author_count[author] += 1
else:
item_author_count[author] = 1
return item_count, item_author_count
def flatten_column(_df, column):
"""
Flattens a column in a DataFrame.
Args:
_df (pandas.DataFrame): The DataFrame containing the column.
column (str): The name of the column to flatten.
Returns:
list: A list of unique values from the flattened column.
"""
column_to_list = _df[column].apply(
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
)
flattened = np.concatenate(column_to_list.values)
uniques = np.unique(flattened)
return uniques.tolist()
with gr.Blocks(fill_width=True) as demo:
df = load_transform_data()
with gr.Tab(label="Spaces Overview"):
with gr.Row():
# Create a pie charge showing the distribution of spaces by SDK
fig2 = px.pie(
df,
names="sdk",
title="Distribution of Spaces by SDK",
template="plotly_dark",
)
gr.Plot(fig2)
# create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
emoji_counts = df["emoji"].value_counts().head(10).reset_index()
fig3 = px.pie(
emoji_counts,
names="emoji",
values="count",
title="Distribution of Spaces by Emoji",
template="plotly_dark",
)
gr.Plot(fig3)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
author_likes = (
df.groupby("author").agg({"likes": "sum", "id": "count"}).reset_index()
)
fig4 = px.scatter(
author_likes,
x="id",
y="likes",
title="Relationship between Number of Spaces Created and Number of Likes",
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
hover_data={"author": True},
template="plotly_dark",
)
gr.Plot(fig4)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
emoji_likes = (
df.groupby("emoji")
.agg({"likes": "sum", "id": "count"})
.sort_values(by="likes", ascending=False)
.head(20)
.reset_index()
)
fig10 = px.scatter(
emoji_likes,
x="id",
y="likes",
title="Relationship between Space Emoji and Number of Likes",
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
hover_data={"emoji": True},
template="plotly_dark",
)
gr.Plot(fig10)
# Create a bar chart of hardware in use
hardware = df["hardware"].value_counts().reset_index()
hardware.columns = ["Hardware", "Number of Spaces"]
fig5 = px.bar(
hardware,
x="Hardware",
y="Number of Spaces",
title="Hardware in Use",
labels={
"Hardware": "Hardware",
"Number of Spaces": "Number of Spaces (log scale)",
},
color="Hardware",
template="plotly_dark",
)
fig5.update_layout(yaxis_type="log")
gr.Plot(fig5)
model_count, model_author_count = count_items(df["models"])
model_author_count = pd.DataFrame(
model_author_count.items(), columns=["Model Author", "Number of Spaces"]
)
fig8 = px.bar(
model_author_count.sort_values("Number of Spaces", ascending=False).head(
20
),
x="Model Author",
y="Number of Spaces",
title="Most Popular Model Authors",
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig8)
model_count = pd.DataFrame(
model_count.items(), columns=["Model", "Number of Spaces"]
)
# then make a bar chart
fig6 = px.bar(
model_count.sort_values("Number of Spaces", ascending=False).head(20),
x="Model",
y="Number of Spaces",
title="Most Used Models",
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig6)
dataset_count, dataset_author_count = count_items(df["datasets"])
dataset_count = pd.DataFrame(
dataset_count.items(), columns=["Datasets", "Number of Spaces"]
)
dataset_author_count = pd.DataFrame(
dataset_author_count.items(), columns=["Dataset Author", "Number of Spaces"]
)
fig9 = px.bar(
dataset_author_count.sort_values("Number of Spaces", ascending=False).head(
20
),
x="Dataset Author",
y="Number of Spaces",
title="Most Popular Dataset Authors",
labels={
"Dataset Author": "Dataset Author",
"Number of Spaces": "Number of Spaces",
},
template="plotly_dark",
)
gr.Plot(fig9)
# then make a bar chart
fig7 = px.bar(
dataset_count.sort_values("Number of Spaces", ascending=False).head(20),
x="Datasets",
y="Number of Spaces",
title="Most Used Datasets",
labels={"Datasets": "Datasets", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig7)
with gr.Row():
# Get the most duplicated spaces
duplicated_spaces = (
df["duplicated_from"].value_counts().head(20).reset_index()
)
duplicated_spaces["duplicated_from"] = duplicated_spaces[
"duplicated_from"
].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
)
duplicated_spaces.columns = ["Space", "Number of Duplicates"]
gr.DataFrame(duplicated_spaces, datatype="html")
# Get the most liked spaces
liked_spaces = (
df[["id", "likes"]].sort_values(by="likes", ascending=False).head(20)
)
liked_spaces["id"] = liked_spaces["id"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
)
liked_spaces.columns = ["Space", "Number of Likes"]
gr.DataFrame(liked_spaces, datatype="html")
with gr.Row():
# Create a dataframe with the top 10 authors and the number of spaces they have created
author_counts = df["author"].value_counts().head(20).reset_index()
author_counts["author"] = author_counts["author"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
)
author_counts.columns = ["Author", "Number of Spaces"]
gr.DataFrame(author_counts, datatype="html")
# create a dataframe where we groupby author and sum their likes
author_likes = df.groupby("author").agg({"likes": "sum"}).reset_index()
author_likes = author_likes.sort_values(by="likes", ascending=False).head(
20
)
author_likes["author"] = author_likes["author"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
)
author_likes.columns = ["Author", "Number of Likes"]
gr.DataFrame(author_likes, datatype="html")
with gr.Tab(label="Spaces Search"):
df = df[df["stage"] == "RUNNING"]
# Layout
with gr.Row():
emoji = gr.Dropdown(
df["emoji"].unique().tolist(),
label="Search by Emoji 🤗",
multiselect=True,
) # Dropdown to select the emoji
likes = gr.Slider(
minimum=df["likes"].min(),
maximum=df["likes"].max(),
step=1,
label="Filter by Likes",
) # Slider to filter by likes
with gr.Row():
author = gr.Dropdown(
df["author"].unique().tolist(),
label="Search by Author",
multiselect=True,
)
# get the list of unique strings in the sdk_tags column
sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
# create a dropdown for the sdk_tags
sdk_tags = gr.Dropdown(
sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
)
with gr.Row():
# create a gradio checkbox group for hardware
hardware = gr.CheckboxGroup(
df["hardware"].unique().tolist(), label="Filter by Hardware"
)
licenses = np.unique(np.concatenate(df["licenses"].values))
space_license = gr.Dropdown(licenses.tolist(), label="Filter by license")
with gr.Row():
models = gr.Dropdown(
flatten_column(df, "models"),
label="Search by Model",
multiselect=True,
)
datasets = gr.Dropdown(
flatten_column(df, "datasets"),
label="Search by Dataset",
multiselect=True,
)
devmode = gr.Checkbox(label="Show Dev Mode Spaces")
clear = gr.ClearButton(
components=[
emoji,
author,
hardware,
sdk_tags,
models,
datasets,
space_license,
]
)
df = pd.DataFrame(
df[
[
"id",
"emoji",
"author",
"url",
"likes",
"hardware",
"sdk_tags",
"models",
"datasets",
"licenses",
"r_sdk_tags",
"r_models",
"r_datasets",
"r_licenses",
"devMode",
]
]
)
gr.DataFrame(
filtered_df,
inputs=[
emoji,
likes,
author,
hardware,
sdk_tags,
models,
datasets,
space_license,
devmode,
],
datatype="html",
wrap=True,
column_widths=["25%", "5%", "25%", "25%", "20%"],
)
demo.launch(share=True)
|