File size: 16,775 Bytes
947150a
 
c1b5e3a
87f778f
cf4323e
87f778f
502fa70
cf4323e
 
 
947150a
cf4323e
 
 
502fa70
cf4323e
502fa70
cf4323e
 
 
 
 
 
 
 
 
 
 
502fa70
cf4323e
 
 
 
 
 
 
 
 
 
 
502fa70
 
 
cf4323e
 
 
947150a
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947150a
cf4323e
 
 
 
 
 
 
 
 
 
cf047e8
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947150a
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
c1b5e3a
 
 
cf4323e
 
 
c1b5e3a
 
 
cf4323e
c1b5e3a
 
 
cf4323e
c1b5e3a
 
 
 
 
87f778f
 
 
 
 
 
 
 
 
 
947150a
87f778f
 
 
cf4323e
 
87f778f
 
 
 
c1b5e3a
cf047e8
502fa70
c1b5e3a
cf4323e
 
 
 
 
 
 
 
 
502fa70
cf4323e
 
 
 
 
 
 
 
 
 
502fa70
cf4323e
 
 
 
502fa70
cf4323e
 
502fa70
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b5e3a
 
87f778f
cf4323e
c1b5e3a
71743f9
cf4323e
 
502fa70
 
 
 
 
 
cf4323e
87f778f
cf4323e
502fa70
 
 
 
 
 
 
 
cf4323e
87f778f
 
502fa70
 
 
cf4323e
 
 
 
 
 
 
 
 
87f778f
c1b5e3a
87f778f
502fa70
 
 
 
 
 
 
cf4323e
 
 
 
cf047e8
cf4323e
 
 
 
87f778f
 
 
502fa70
 
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
87f778f
 
502fa70
 
 
 
cf4323e
 
 
 
 
 
 
 
 
 
87f778f
502fa70
 
 
87f778f
cf4323e
 
 
 
 
 
 
 
87f778f
 
502fa70
 
 
 
 
 
 
cf4323e
 
 
 
 
 
 
 
 
 
 
 
 
87f778f
 
cf4323e
 
 
 
 
 
 
 
87f778f
 
cf4323e
 
502fa70
 
 
cf4323e
 
 
 
 
 
502fa70
87f778f
cf4323e
502fa70
 
 
cf4323e
 
 
502fa70
cf4323e
87f778f
cf4323e
 
502fa70
cf4323e
 
 
 
 
87f778f
cf4323e
502fa70
 
 
 
cf4323e
 
 
 
 
87f778f
cf4323e
502fa70
87f778f
cf4323e
 
 
502fa70
 
 
cf4323e
 
 
 
 
 
 
 
 
502fa70
 
 
cf4323e
 
 
 
 
 
 
 
 
 
 
 
87f778f
cf4323e
 
87f778f
cf4323e
 
 
 
 
 
 
 
 
 
 
87f778f
cf047e8
502fa70
 
87f778f
 
 
 
 
 
502fa70
 
 
87f778f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502fa70
87f778f
c1b5e3a
 
87f778f
 
 
 
 
 
 
 
 
 
 
cf047e8
87f778f
 
502fa70
 
87f778f
947150a
 
502fa70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from datasets import load_dataset


def load_transform_data():
    """
    Load and transform data from a parquet file.

    Returns:
        pandas.DataFrame: Transformed dataframe.
    """
    spaces_dataset = "jsulz/space-stats"
    dataset = load_dataset(spaces_dataset)
    df = dataset["train"].to_pandas()
    # combine the sdk and tags columns, one of which is a string and the other is an array of strings
    df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
    df["licenses"] = df["license"].apply(
        lambda x: np.array([str(x)]) if x is None else x
    )
    # then combine the sdk and tags columns so that their elements are together
    df["sdk_tags"] = df[["sdk", "tags"]].apply(
        lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
    )

    # Fill the NaN values with an empty string
    df["emoji"] = np.where(df["emoji"].isnull(), "", df["emoji"])

    # where the custom_domains column is not null, use that as the url, otherwise, use the host column
    df["url"] = np.where(
        df["custom_domains"].isnull(),
        df["id"],
        df["custom_domains"],
    )

    # Build up a pretty url that's clickable with the emoji
    df["url"] = df[["url", "emoji"]].apply(
        lambda x: (
            f'<a target="_blank" href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>'
            if x.iloc[0] is not None
            else f'<a target="_blank" href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>'
        ),
        axis=1,
    )

    # Prep the models, datasets, and licenses columns for display
    df["r_models"] = [
        ", ".join(models) if models is not None else "" for models in df["models"]
    ]
    df["r_sdk_tags"] = [
        ", ".join(sdk_tags) if sdk_tags is not None else ""
        for sdk_tags in df["sdk_tags"]
    ]
    df["r_datasets"] = [
        ", ".join(datasets) if datasets is not None else ""
        for datasets in df["datasets"]
    ]
    df["r_licenses"] = [
        ", ".join(licenses) if licenses is not None else ""
        for licenses in df["licenses"]
    ]
    return df


def filtered_df(
    filtered_emojis,
    filtered_likes,
    filtered_author,
    filtered_hardware,
    filtered_tags,
    filtered_models,
    filtered_datasets,
    space_licenses,
    filtered_devmode,
):
    """
    Filter the dataframe based on the given criteria.

    Args:
        filtered_emojis (list): List of emojis to filter the dataframe by.
        filtered_likes (int): Minimum number of likes to filter the dataframe by.
        filtered_author (list): List of authors to filter the dataframe by.
        filtered_hardware (list): List of hardware to filter the dataframe by.
        filtered_tags (list): List of tags to filter the dataframe by.
        filtered_models (list): List of models to filter the dataframe by.
        filtered_datasets (list): List of datasets to filter the dataframe by.
        space_licenses (list): List of licenses to filter the dataframe by.

    Returns:
        pandas.DataFrame: Filtered dataframe with the following columns: "URL", "Likes", "Models", "Datasets", "Licenses".
    """
    _df = df
    if filtered_emojis:
        _df = _df[_df["emoji"].isin(filtered_emojis)]
    if filtered_likes:
        _df = _df[_df["likes"] >= filtered_likes]
    if filtered_author:
        _df = _df[_df["author"].isin(filtered_author)]
    if filtered_hardware:
        _df = _df[_df["hardware"].isin(filtered_hardware)]
    if filtered_tags:
        _df = _df[
            _df["sdk_tags"].apply(lambda x: any(tag in x for tag in filtered_tags))
        ]
    if filtered_models:
        _df = _df[
            _df["models"].apply(
                lambda x: (
                    any(model in x for model in filtered_models)
                    if x is not None
                    else False
                )
            )
        ]
    if filtered_datasets:
        _df = _df[
            _df["datasets"].apply(
                lambda x: (
                    any(dataset in x for dataset in filtered_datasets)
                    if x is not None
                    else False
                )
            )
        ]
    if space_licenses:
        _df = _df[
            _df["licenses"].apply(
                lambda x: (
                    any(space_license in x for space_license in space_licenses)
                    if x is not None
                    else False
                )
            )
        ]

    # rename the columns names to make them more readable
    _df = _df.rename(
        columns={
            "url": "URL",
            "likes": "Likes",
            "r_models": "Models",
            "r_datasets": "Datasets",
            "r_licenses": "Licenses",
        }
    )
    if filtered_devmode:
        _df = _df[_df["devMode"] == filtered_devmode]

    return _df[["URL", "Likes", "Models", "Datasets", "Licenses"]]


def count_items(items):
    """
    Count the occurrences of items and authors in a given list of items.
    Parameters:
    items (dataframe column): A dataframe column containing a list of items.
    Returns:
    tuple: A tuple containing two dictionaries. The first dictionary contains the count of each item,
    and the second dictionary contains the count of each author.
    """
    items = np.concatenate([arr for arr in items.values if arr is not None])
    item_count = {}
    item_author_count = {}
    for item in items:
        if item in item_count:
            item_count[item] += 1
        else:
            item_count[item] = 1
        author = item.split("/")[0]
        if author in item_author_count:
            item_author_count[author] += 1
        else:
            item_author_count[author] = 1

    return item_count, item_author_count


def flatten_column(_df, column):
    """
    Flattens a column in a DataFrame.

    Args:
        _df (pandas.DataFrame): The DataFrame containing the column.
        column (str): The name of the column to flatten.

    Returns:
        list: A list of unique values from the flattened column.
    """
    column_to_list = _df[column].apply(
        lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
    )
    flattened = np.concatenate(column_to_list.values)
    uniques = np.unique(flattened)
    return uniques.tolist()


with gr.Blocks(fill_width=True) as demo:
    df = load_transform_data()

    with gr.Tab(label="Spaces Overview"):
        with gr.Row():
            # Create a pie charge showing the distribution of spaces by SDK
            fig2 = px.pie(
                df,
                names="sdk",
                title="Distribution of Spaces by SDK",
                template="plotly_dark",
            )
            gr.Plot(fig2)

            # create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
            emoji_counts = df["emoji"].value_counts().head(10).reset_index()
            fig3 = px.pie(
                emoji_counts,
                names="emoji",
                values="count",
                title="Distribution of Spaces by Emoji",
                template="plotly_dark",
            )
            gr.Plot(fig3)

        # Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
        author_likes = (
            df.groupby("author").agg({"likes": "sum", "id": "count"}).reset_index()
        )
        fig4 = px.scatter(
            author_likes,
            x="id",
            y="likes",
            title="Relationship between Number of Spaces Created and Number of Likes",
            labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
            hover_data={"author": True},
            template="plotly_dark",
        )
        gr.Plot(fig4)

        # Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
        emoji_likes = (
            df.groupby("emoji")
            .agg({"likes": "sum", "id": "count"})
            .sort_values(by="likes", ascending=False)
            .head(20)
            .reset_index()
        )
        fig10 = px.scatter(
            emoji_likes,
            x="id",
            y="likes",
            title="Relationship between Space Emoji and Number of Likes",
            labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
            hover_data={"emoji": True},
            template="plotly_dark",
        )
        gr.Plot(fig10)

        # Create a bar chart of hardware in use
        hardware = df["hardware"].value_counts().reset_index()
        hardware.columns = ["Hardware", "Number of Spaces"]
        fig5 = px.bar(
            hardware,
            x="Hardware",
            y="Number of Spaces",
            title="Hardware in Use",
            labels={
                "Hardware": "Hardware",
                "Number of Spaces": "Number of Spaces (log scale)",
            },
            color="Hardware",
            template="plotly_dark",
        )
        fig5.update_layout(yaxis_type="log")
        gr.Plot(fig5)

        model_count, model_author_count = count_items(df["models"])
        model_author_count = pd.DataFrame(
            model_author_count.items(), columns=["Model Author", "Number of Spaces"]
        )
        fig8 = px.bar(
            model_author_count.sort_values("Number of Spaces", ascending=False).head(
                20
            ),
            x="Model Author",
            y="Number of Spaces",
            title="Most Popular Model Authors",
            labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
            template="plotly_dark",
        )
        gr.Plot(fig8)
        model_count = pd.DataFrame(
            model_count.items(), columns=["Model", "Number of Spaces"]
        )
        # then make a bar chart
        fig6 = px.bar(
            model_count.sort_values("Number of Spaces", ascending=False).head(20),
            x="Model",
            y="Number of Spaces",
            title="Most Used Models",
            labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
            template="plotly_dark",
        )
        gr.Plot(fig6)

        dataset_count, dataset_author_count = count_items(df["datasets"])
        dataset_count = pd.DataFrame(
            dataset_count.items(), columns=["Datasets", "Number of Spaces"]
        )
        dataset_author_count = pd.DataFrame(
            dataset_author_count.items(), columns=["Dataset Author", "Number of Spaces"]
        )
        fig9 = px.bar(
            dataset_author_count.sort_values("Number of Spaces", ascending=False).head(
                20
            ),
            x="Dataset Author",
            y="Number of Spaces",
            title="Most Popular Dataset Authors",
            labels={
                "Dataset Author": "Dataset Author",
                "Number of Spaces": "Number of Spaces",
            },
            template="plotly_dark",
        )
        gr.Plot(fig9)
        # then make a bar chart
        fig7 = px.bar(
            dataset_count.sort_values("Number of Spaces", ascending=False).head(20),
            x="Datasets",
            y="Number of Spaces",
            title="Most Used Datasets",
            labels={"Datasets": "Datasets", "Number of Spaces": "Number of Spaces"},
            template="plotly_dark",
        )
        gr.Plot(fig7)

        with gr.Row():
            # Get the most duplicated spaces
            duplicated_spaces = (
                df["duplicated_from"].value_counts().head(20).reset_index()
            )
            duplicated_spaces["duplicated_from"] = duplicated_spaces[
                "duplicated_from"
            ].apply(
                lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
            )
            duplicated_spaces.columns = ["Space", "Number of Duplicates"]
            gr.DataFrame(duplicated_spaces, datatype="html")

            # Get the most liked spaces
            liked_spaces = (
                df[["id", "likes"]].sort_values(by="likes", ascending=False).head(20)
            )
            liked_spaces["id"] = liked_spaces["id"].apply(
                lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
            )
            liked_spaces.columns = ["Space", "Number of Likes"]
            gr.DataFrame(liked_spaces, datatype="html")

        with gr.Row():
            # Create a dataframe with the top 10 authors and the number of spaces they have created
            author_counts = df["author"].value_counts().head(20).reset_index()
            author_counts["author"] = author_counts["author"].apply(
                lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
            )
            author_counts.columns = ["Author", "Number of Spaces"]
            gr.DataFrame(author_counts, datatype="html")

            # create a dataframe where we groupby author and sum their likes
            author_likes = df.groupby("author").agg({"likes": "sum"}).reset_index()
            author_likes = author_likes.sort_values(by="likes", ascending=False).head(
                20
            )
            author_likes["author"] = author_likes["author"].apply(
                lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
            )
            author_likes.columns = ["Author", "Number of Likes"]
            gr.DataFrame(author_likes, datatype="html")

    with gr.Tab(label="Spaces Search"):
        df = df[df["stage"] == "RUNNING"]

        # Layout
        with gr.Row():
            emoji = gr.Dropdown(
                df["emoji"].unique().tolist(),
                label="Search by Emoji 🤗",
                multiselect=True,
            )  # Dropdown to select the emoji
            likes = gr.Slider(
                minimum=df["likes"].min(),
                maximum=df["likes"].max(),
                step=1,
                label="Filter by Likes",
            )  # Slider to filter by likes
        with gr.Row():
            author = gr.Dropdown(
                df["author"].unique().tolist(),
                label="Search by Author",
                multiselect=True,
            )
            # get the list of unique strings in the sdk_tags column
            sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
            # create a dropdown for the sdk_tags
            sdk_tags = gr.Dropdown(
                sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
            )
        with gr.Row():
            # create a gradio checkbox group for hardware
            hardware = gr.CheckboxGroup(
                df["hardware"].unique().tolist(), label="Filter by Hardware"
            )

            licenses = np.unique(np.concatenate(df["licenses"].values))
            space_license = gr.Dropdown(licenses.tolist(), label="Filter by license")

        with gr.Row():
            models = gr.Dropdown(
                flatten_column(df, "models"),
                label="Search by Model",
                multiselect=True,
            )
            datasets = gr.Dropdown(
                flatten_column(df, "datasets"),
                label="Search by Dataset",
                multiselect=True,
            )

        devmode = gr.Checkbox(label="Show Dev Mode Spaces")
        clear = gr.ClearButton(
            components=[
                emoji,
                author,
                hardware,
                sdk_tags,
                models,
                datasets,
                space_license,
            ]
        )

        df = pd.DataFrame(
            df[
                [
                    "id",
                    "emoji",
                    "author",
                    "url",
                    "likes",
                    "hardware",
                    "sdk_tags",
                    "models",
                    "datasets",
                    "licenses",
                    "r_sdk_tags",
                    "r_models",
                    "r_datasets",
                    "r_licenses",
                    "devMode",
                ]
            ]
        )
        gr.DataFrame(
            filtered_df,
            inputs=[
                emoji,
                likes,
                author,
                hardware,
                sdk_tags,
                models,
                datasets,
                space_license,
                devmode,
            ],
            datatype="html",
            wrap=True,
            column_widths=["25%", "5%", "25%", "25%", "20%"],
        )


demo.launch(share=True)