import gradio as gr import pandas as pd import numpy as np # Load the spaces.parquet file as a dataframe df = pd.read_parquet("spaces.parquet") """ Todos: Create tabbed interface for filtering and graphs plotly graph showing the growth of spaces over time plotly graph showing the breakdown of spaces by sdk plotly graph of colors plotly graph of emojis Plotly graph of hardware Investigate README lengths bar chart of the number of spaces per author Is there a correlation between pinning a space and the number of likes? Is a correlation between the emoji and the number of likes? distribution of python versions what models are most used what organizations are most popular in terms of their models and datasets being used most duplicated spaces "id", "author", "created_at", "last_modified", "subdomain", "host", "likes", "sdk", "tags", "readme_size", "python_version", "license", "duplicated_from", "models", "datasets", "emoji", "colorFrom", "colorTo", "pinned", "stage", "hardware", "devMode", "custom_domains", """ def filtered_df(emoji, likes, author, hardware, tags, models, datasets): _df = df # if emoji is not none, filter the dataframe with it if emoji: _df = _df[_df["emoji"].isin(emoji)] # if likes is not none, filter the dataframe with it if likes: _df = _df[_df["likes"] >= likes] if author: _df = _df[_df["author"].isin(author)] if hardware: _df = _df[_df["hardware"].isin(hardware)] # check to see if the array of sdk_tags contains any of the selected tags if tags: _df = _df[_df["sdk_tags"].apply(lambda x: any(tag in x for tag in tags))] if models: _df = _df[ _df["models"].apply( lambda x: ( any(model in x for model in models) if x is not None else False ) ) ] if datasets: _df = _df[ _df["datasets"].apply( lambda x: ( any(dataset in x for dataset in datasets) if x is not None else False ) ) ] return _df with gr.Blocks() as demo: df = df[df["stage"] == "RUNNING"] # combine the sdk and tags columns, one of which is a string and the other is an array of strings # first convert the sdk column to an array of strings df["sdk"] = df["sdk"].apply(lambda x: np.array([x])) # then combine the sdk and tags columns so that their elements are together df["sdk_tags"] = df[["sdk", "tags"]].apply( lambda x: np.concatenate((x[0], x[1])), axis=1 ) # where the custom_domains column is not null, use that as the url, otherwise, use the host column df["url"] = np.where( df["custom_domains"].isnull(), df["id"], df["custom_domains"], ) emoji = gr.Dropdown( df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True ) # Dropdown to select the emoji likes = gr.Slider( minimum=df["likes"].min(), maximum=df["likes"].max(), step=1, label="Filter by Likes", ) # Slider to filter by likes hardware = gr.Dropdown( df["hardware"].unique().tolist(), label="Search by Hardware", multiselect=True ) author = gr.Dropdown( df["author"].unique().tolist(), label="Search by Author", multiselect=True ) # get the list of unique strings in the sdk_tags column sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values)) # create a dropdown for the sdk_tags sdk_tags = gr.Dropdown( sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True ) # create a gradio checkbox group for hardware hardware = gr.CheckboxGroup( df["hardware"].unique().tolist(), label="Filter by Hardware" ) space_license = gr.CheckboxGroup( df["license"].unique().tolist(), label="Filter by license" ) # Assuming df is your dataframe and 'array_column' is the column containing np.array of strings array_column_as_lists = df["models"].apply( lambda x: np.array(["None"]) if np.ndim(x) == 0 else x ) # Now, flatten all arrays into one list flattened_strings = np.concatenate(array_column_as_lists.values) # Get unique strings unique_strings = np.unique(flattened_strings) # Convert to a list if needed unique_strings_list = unique_strings.tolist() models = gr.Dropdown( unique_strings_list, label="Search by Model", multiselect=True, ) # Assuming df is your dataframe and 'array_column' is the column containing np.array of strings array_column_as_lists = df["datasets"].apply( lambda x: np.array(["None"]) if np.ndim(x) == 0 else x ) # Now, flatten all arrays into one list flattened_strings = np.concatenate(array_column_as_lists.values) # Get unique strings unique_strings = np.unique(flattened_strings) # Convert to a list if needed unique_strings_list = unique_strings.tolist() datasets = gr.Dropdown( unique_strings_list, label="Search by Model", multiselect=True, ) devMode = gr.Checkbox(value=False, label="DevMode Enabled") clear = gr.ClearButton(components=[emoji]) df = pd.DataFrame( df[ [ "id", "emoji", "author", "url", "likes", "hardware", "sdk_tags", "models", "datasets", ] ] ) df["url"] = df["url"].apply( lambda x: ( f"{x}" if x is not None and "/" in x else f"{x[0]}" ) ) gr.DataFrame( filtered_df, inputs=[emoji, likes, author, hardware, sdk_tags, models, datasets], datatype="html", ) demo.launch()