Upload app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import gradio as gr
|
|
5 |
import torch
|
6 |
from dotenv import load_dotenv
|
7 |
from pinecone import Pinecone
|
8 |
-
from
|
9 |
|
10 |
# Detect GPU availability and set device
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -39,48 +39,74 @@ index = initialize_pinecone_index(index_name)
|
|
39 |
# Initialize HuggingFace embedding model
|
40 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/msmarco-distilbert-base-v4")
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Function to interact with Pinecone and OpenAI GPT-4
|
43 |
-
def get_model_response(human_input
|
44 |
try:
|
45 |
-
#
|
46 |
query_embedding = torch.tensor(embedding_model.embed_query(human_input)).to(device)
|
47 |
-
|
48 |
-
# Convert NumPy array to list before passing it to Pinecone or any API that requires JSON-serializable data
|
49 |
query_embedding = query_embedding.cpu().numpy().tolist()
|
50 |
|
51 |
-
# Query Pinecone index
|
52 |
search_results = index.query(vector=query_embedding, top_k=2, include_metadata=True)
|
53 |
|
54 |
context_list, images = [], []
|
55 |
for ind, result in enumerate(search_results['matches']):
|
56 |
-
document_content = result.get('metadata', {}).get('content', 'No content found')
|
57 |
-
image_url = result.get('metadata', {}).get('image_path', None)
|
58 |
-
figure_desc = result.get('metadata', {}).get('figure_description', '')
|
59 |
-
|
60 |
context_list.append(f"Document {ind+1}: {document_content}")
|
61 |
-
|
62 |
if image_url and figure_desc:
|
63 |
images.append((figure_desc, image_url))
|
64 |
-
|
65 |
context_string = '\n\n'.join(context_list)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
response = openai.ChatCompletion.create(
|
71 |
model="gpt-3.5-turbo",
|
72 |
messages=messages,
|
73 |
max_tokens=500,
|
74 |
temperature=0.5
|
75 |
)
|
|
|
76 |
output_text = response['choices'][0]['message']['content'].strip()
|
|
|
|
|
|
|
|
|
77 |
return output_text, images
|
|
|
78 |
except Exception as e:
|
79 |
return f"Error invoking model: {str(e)}", []
|
80 |
|
81 |
-
# Function to format text and images for display
|
82 |
-
def get_model_response_with_images(human_input,
|
83 |
-
output_text, images = get_model_response(human_input
|
84 |
if images:
|
85 |
image_output = "".join([f"\n\n**{figure_desc}**\n" for figure_desc, image_path in images])
|
86 |
return output_text + image_output
|
|
|
5 |
import torch
|
6 |
from dotenv import load_dotenv
|
7 |
from pinecone import Pinecone
|
8 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
9 |
|
10 |
# Detect GPU availability and set device
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
39 |
# Initialize HuggingFace embedding model
|
40 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/msmarco-distilbert-base-v4")
|
41 |
|
42 |
+
# Initialize chat history manually
|
43 |
+
chat_history = []
|
44 |
+
|
45 |
+
# Helper function to recursively flatten any list to a string
|
46 |
+
def flatten_to_string(data):
|
47 |
+
if isinstance(data, list):
|
48 |
+
return " ".join([flatten_to_string(item) for item in data])
|
49 |
+
if data is None:
|
50 |
+
return ""
|
51 |
+
return str(data)
|
52 |
+
|
53 |
# Function to interact with Pinecone and OpenAI GPT-4
|
54 |
+
def get_model_response(human_input):
|
55 |
try:
|
56 |
+
# Embed the query
|
57 |
query_embedding = torch.tensor(embedding_model.embed_query(human_input)).to(device)
|
|
|
|
|
58 |
query_embedding = query_embedding.cpu().numpy().tolist()
|
59 |
|
60 |
+
# Query Pinecone index
|
61 |
search_results = index.query(vector=query_embedding, top_k=2, include_metadata=True)
|
62 |
|
63 |
context_list, images = [], []
|
64 |
for ind, result in enumerate(search_results['matches']):
|
65 |
+
document_content = flatten_to_string(result.get('metadata', {}).get('content', 'No content found'))
|
66 |
+
image_url = flatten_to_string(result.get('metadata', {}).get('image_path', None))
|
67 |
+
figure_desc = flatten_to_string(result.get('metadata', {}).get('figure_description', ''))
|
68 |
+
|
69 |
context_list.append(f"Document {ind+1}: {document_content}")
|
|
|
70 |
if image_url and figure_desc:
|
71 |
images.append((figure_desc, image_url))
|
72 |
+
|
73 |
context_string = '\n\n'.join(context_list)
|
74 |
+
|
75 |
+
# Add user message to chat history
|
76 |
+
chat_history.append({"role": "user", "content": human_input})
|
77 |
+
|
78 |
+
# Create messages for OpenAI's API
|
79 |
+
messages = [{"role": "system", "content": "You are a helpful assistant."}] + chat_history + [
|
80 |
+
{"role": "system", "content": f"Here is some context:\n{context_string}"},
|
81 |
+
{"role": "user", "content": human_input}
|
82 |
+
]
|
83 |
+
|
84 |
+
# Validate messages before sending to OpenAI
|
85 |
+
for message in messages:
|
86 |
+
if not isinstance(message, dict) or "role" not in message or "content" not in message:
|
87 |
+
raise ValueError(f"Invalid message format: {message}")
|
88 |
+
|
89 |
+
# Send the conversation to OpenAI's API
|
90 |
response = openai.ChatCompletion.create(
|
91 |
model="gpt-3.5-turbo",
|
92 |
messages=messages,
|
93 |
max_tokens=500,
|
94 |
temperature=0.5
|
95 |
)
|
96 |
+
|
97 |
output_text = response['choices'][0]['message']['content'].strip()
|
98 |
+
|
99 |
+
# Add assistant message to chat history
|
100 |
+
chat_history.append({"role": "assistant", "content": output_text})
|
101 |
+
|
102 |
return output_text, images
|
103 |
+
|
104 |
except Exception as e:
|
105 |
return f"Error invoking model: {str(e)}", []
|
106 |
|
107 |
+
# Function to format text and images for display and track conversation
|
108 |
+
def get_model_response_with_images(human_input, history=None):
|
109 |
+
output_text, images = get_model_response(human_input)
|
110 |
if images:
|
111 |
image_output = "".join([f"\n\n**{figure_desc}**\n" for figure_desc, image_path in images])
|
112 |
return output_text + image_output
|