juanelot commited on
Commit
294e509
verified
1 Parent(s): 1fe8eb4
Files changed (1) hide show
  1. app.py +35 -9
app.py CHANGED
@@ -1,18 +1,43 @@
1
  import gradio as gr
2
- import requests
3
- import io
4
- from PIL import Image
5
 
6
- API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
7
- headers = {"Authorization": "Bearer HF_API_KEY"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
  def generate_image(prompt):
10
- payload = {"inputs": prompt}
11
- response = requests.post(API_URL, headers=headers, json=payload)
12
- image_bytes = response.content
13
- image = Image.open(io.BytesIO(image_bytes))
 
 
 
 
 
 
 
 
14
  return image
15
 
 
16
  iface = gr.Interface(
17
  fn=generate_image,
18
  inputs=gr.Textbox(lines=5, label="Descripci贸n de la imagen", placeholder="Introduce el texto aqu铆..."),
@@ -35,4 +60,5 @@ iface = gr.Interface(
35
  """
36
  )
37
 
 
38
  iface.launch()
 
1
  import gradio as gr
2
+ from diffusers import DiffusionPipeline
3
+ import torch
 
4
 
5
+ # Cargar ambos modelos base y refiner
6
+ base = DiffusionPipeline.from_pretrained(
7
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
8
+ )
9
+ base.to("cuda")
10
+ refiner = DiffusionPipeline.from_pretrained(
11
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
12
+ text_encoder_2=base.text_encoder_2,
13
+ vae=base.vae,
14
+ torch_dtype=torch.float16,
15
+ use_safetensors=True,
16
+ variant="fp16",
17
+ )
18
+ refiner.to("cuda")
19
+
20
+ # Definir cu谩ntos pasos y qu茅 porcentaje de pasos ejecutar en cada experto (80/20) aqu铆
21
+ n_steps = 40
22
+ high_noise_frac = 0.8
23
 
24
+ # Definir funci贸n para generar imagen
25
  def generate_image(prompt):
26
+ image = base(
27
+ prompt=prompt,
28
+ num_inference_steps=n_steps,
29
+ denoising_end=high_noise_frac,
30
+ output_type="latent",
31
+ ).images
32
+ image = refiner(
33
+ prompt=prompt,
34
+ num_inference_steps=n_steps,
35
+ denoising_start=high_noise_frac,
36
+ image=image,
37
+ ).images[0]
38
  return image
39
 
40
+ # Crear la interfaz de Gradio
41
  iface = gr.Interface(
42
  fn=generate_image,
43
  inputs=gr.Textbox(lines=5, label="Descripci贸n de la imagen", placeholder="Introduce el texto aqu铆..."),
 
60
  """
61
  )
62
 
63
+ # Ejecutar la interfaz
64
  iface.launch()