import gradio as gr import numpy as np import torch from transformers import pipeline, VitsModel, AutoTokenizer, AutoTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" translation_models = { "en": "Helsinki-NLP/opus-mt-en-es", # Inglés a Español "fr": "Helsinki-NLP/opus-mt-fr-es", # Francés a Español "de": "Helsinki-NLP/opus-mt-de-es", # Alemán a Español "it": "Helsinki-NLP/opus-mt-it-es", # Italiano a Español "pt": "Helsinki-NLP/opus-mt-pt-es", # Portugués a Español "nl": "Helsinki-NLP/opus-mt-nl-es", # Neerlandés (Holandés) a Español "fi": "Helsinki-NLP/opus-mt-fi-es", # Finés a Español "sv": "Helsinki-NLP/opus-mt-sv-es", # Sueco a Español "da": "Helsinki-NLP/opus-mt-da-es", # Danés a Español "no": "Helsinki-NLP/opus-mt-no-es", # Noruego a Español "ru": "Helsinki-NLP/opus-mt-ru-es", # Ruso a Español "pl": "Helsinki-NLP/opus-mt-pl-es", # Polaco a Español "cs": "Helsinki-NLP/opus-mt-cs-es", # Checo a Español "tr": "Helsinki-NLP/opus-mt-tr-es", # Turco a Español "zh": "Helsinki-NLP/opus-mt-zh-es", # Chino a Español "ja": "Helsinki-NLP/opus-mt-ja-es", # Japonés a Español "ar": "Helsinki-NLP/opus-mt-ar-es", # Árabe a Español "ro": "Helsinki-NLP/opus-mt-ro-es", # Rumano a Español "el": "Helsinki-NLP/opus-mt-el-es", # Griego a Español "bg": "Helsinki-NLP/opus-mt-bg-es", # Búlgaro a Español "uk": "Helsinki-NLP/opus-mt-uk-es", # Ucraniano a Español "he": "Helsinki-NLP/opus-mt-he-es", # Hebreo a Español "lt": "Helsinki-NLP/opus-mt-lt-es", # Lituano a Español "et": "Helsinki-NLP/opus-mt-et-es", # Estonio a Español "hr": "Helsinki-NLP/opus-mt-hr-es", # Croata a Español "hu": "Helsinki-NLP/opus-mt-hu-es", # Húngaro a Español "lv": "Helsinki-NLP/opus-mt-lv-es", # Letón a Español "sl": "Helsinki-NLP/opus-mt-sl-es", # Esloveno a Español "sk": "Helsinki-NLP/opus-mt-sk-es", # Eslovaco a Español "sr": "Helsinki-NLP/opus-mt-sr-es", # Serbio a Español "fa": "Helsinki-NLP/opus-mt-fa-es", # Persa a Español } asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa") vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa") lang_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection") def language_detector(text): resultado = lang_detector(text) idioma_detectado = resultado[0]['label'] return idioma_detectado def translate(audio): transcribe = asr_pipe(audio, max_new_tokens=256) codigo_idioma = language_detector(transcribe['text']) if codigo_idioma in translation_models: translator = pipeline("translation", model=translation_models[codigo_idioma]) traduccion = translator(transcribe['text']) else: transcribe = transcribe['text'] print(f"No hay un modelo de traducción disponible para el idioma detectado {codigo_idioma}") return transcribe return traduccion def synthesise(text): if isinstance(text, list): text = text[0]['translation_text'] else: text = text print(text) inputs = vist_tokenizer(text, return_tensors="pt") with torch.no_grad(): output = vist_model(**inputs).waveform[0] return output def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()