Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,89 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
|
5 |
-
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
|
|
|
|
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
css = """
|
61 |
-
#
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
-
|
69 |
-
|
|
|
70 |
|
|
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
label="
|
74 |
-
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
6 |
|
7 |
+
# 1. Load your fine-tuned retrieval model (on CodeSearchNet - Python)
|
8 |
+
# This is the model you pushed to the Hugging Face Hub after training.
|
9 |
+
model_name = "juanwisz/modernbert-python-code-retrieval"
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# SentenceTransformer automatically handles tokenizer + embedding
|
13 |
+
embedding_model = SentenceTransformer(model_name, device=device)
|
14 |
+
|
15 |
+
# 2. Define a function to:
|
16 |
+
# - Parse code snippets from the text box (split by "---")
|
17 |
+
# - Compute embeddings for the user’s query and each snippet
|
18 |
+
# - Return the top 3 most relevant code snippets based on cosine similarity
|
19 |
+
def retrieve_top_snippets(query, code_input):
|
20 |
+
# Split the code snippets by "---"
|
21 |
+
# Each snippet is trimmed for cleanliness
|
22 |
+
snippets = [s.strip() for s in code_input.split("---") if s.strip()]
|
23 |
+
|
24 |
+
# Edge-case: if user provided no code, just return
|
25 |
+
if len(snippets) == 0:
|
26 |
+
return "No code snippets detected (make sure to separate them with ---)."
|
27 |
+
|
28 |
+
# Embed the query and code snippets
|
29 |
+
query_emb = embedding_model.encode(query, convert_to_tensor=True)
|
30 |
+
snippets_emb = embedding_model.encode(snippets, convert_to_tensor=True)
|
31 |
+
|
32 |
+
# Compute cosine similarities [batch_size x 1] with all code snippets
|
33 |
+
cos_scores = util.cos_sim(query_emb, snippets_emb)[0]
|
34 |
+
|
35 |
+
# Sort results by decreasing score
|
36 |
+
# argsort(descending) means the first indices are the most relevant
|
37 |
+
top_indices = torch.topk(cos_scores, k=min(3, len(snippets))).indices
|
38 |
+
|
39 |
+
# Prepare text output with top 3 matches
|
40 |
+
results = []
|
41 |
+
for idx in top_indices:
|
42 |
+
score = cos_scores[idx].item()
|
43 |
+
snippet_text = snippets[idx]
|
44 |
+
results.append(f"**Score**: {score:.4f}\n```python\n{snippet_text}\n```")
|
45 |
+
|
46 |
+
# Join all results nicely
|
47 |
+
return "\n\n".join(results)
|
48 |
+
|
49 |
+
|
50 |
+
#####################
|
51 |
+
### Gradio Layout ###
|
52 |
+
#####################
|
53 |
css = """
|
54 |
+
#container {
|
55 |
margin: 0 auto;
|
56 |
+
max-width: 700px;
|
57 |
}
|
58 |
"""
|
59 |
|
60 |
with gr.Blocks(css=css) as demo:
|
61 |
+
gr.Markdown("# Code Retrieval using ModernBERT\n"
|
62 |
+
"Enter a natural language query and paste multiple Python code snippets, "
|
63 |
+
"delimited by `---`. We'll return the top 3 matches.")
|
64 |
|
65 |
+
with gr.Column(elem_id="container"):
|
66 |
with gr.Row():
|
67 |
+
query_input = gr.Textbox(
|
68 |
+
label="Natural Language Query",
|
69 |
+
placeholder="What does your function do? e.g., 'Parse JSON from a string'"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
+
code_snippets_input = gr.Textbox(
|
73 |
+
label="Paste Python functions (delimited by ---)",
|
74 |
+
lines=10,
|
75 |
+
placeholder="Example:\n---\ndef parse_json(data):\n return json.loads(data)\n---\ndef add_numbers(a, b):\n return a + b\n---"
|
76 |
+
)
|
77 |
+
|
78 |
+
search_btn = gr.Button("Search", variant="primary")
|
79 |
+
results_output = gr.Markdown(label="Top 3 Matches")
|
80 |
+
|
81 |
+
# On click, run our retrieval function
|
82 |
+
search_btn.click(
|
83 |
+
fn=retrieve_top_snippets,
|
84 |
+
inputs=[query_input, code_snippets_input],
|
85 |
+
outputs=results_output
|
86 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
demo.launch()
|