juanwisz commited on
Commit
a19817b
·
verified ·
1 Parent(s): be20073

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -135
app.py CHANGED
@@ -1,154 +1,89 @@
1
  import gradio as gr
 
2
  import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  css = """
61
- #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
 
70
 
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
  )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
  import numpy as np
 
4
 
5
+ from sentence_transformers import SentenceTransformer, util
 
 
6
 
7
+ # 1. Load your fine-tuned retrieval model (on CodeSearchNet - Python)
8
+ # This is the model you pushed to the Hugging Face Hub after training.
9
+ model_name = "juanwisz/modernbert-python-code-retrieval"
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ # SentenceTransformer automatically handles tokenizer + embedding
13
+ embedding_model = SentenceTransformer(model_name, device=device)
14
+
15
+ # 2. Define a function to:
16
+ # - Parse code snippets from the text box (split by "---")
17
+ # - Compute embeddings for the user’s query and each snippet
18
+ # - Return the top 3 most relevant code snippets based on cosine similarity
19
+ def retrieve_top_snippets(query, code_input):
20
+ # Split the code snippets by "---"
21
+ # Each snippet is trimmed for cleanliness
22
+ snippets = [s.strip() for s in code_input.split("---") if s.strip()]
23
+
24
+ # Edge-case: if user provided no code, just return
25
+ if len(snippets) == 0:
26
+ return "No code snippets detected (make sure to separate them with ---)."
27
+
28
+ # Embed the query and code snippets
29
+ query_emb = embedding_model.encode(query, convert_to_tensor=True)
30
+ snippets_emb = embedding_model.encode(snippets, convert_to_tensor=True)
31
+
32
+ # Compute cosine similarities [batch_size x 1] with all code snippets
33
+ cos_scores = util.cos_sim(query_emb, snippets_emb)[0]
34
+
35
+ # Sort results by decreasing score
36
+ # argsort(descending) means the first indices are the most relevant
37
+ top_indices = torch.topk(cos_scores, k=min(3, len(snippets))).indices
38
+
39
+ # Prepare text output with top 3 matches
40
+ results = []
41
+ for idx in top_indices:
42
+ score = cos_scores[idx].item()
43
+ snippet_text = snippets[idx]
44
+ results.append(f"**Score**: {score:.4f}\n```python\n{snippet_text}\n```")
45
+
46
+ # Join all results nicely
47
+ return "\n\n".join(results)
48
+
49
+
50
+ #####################
51
+ ### Gradio Layout ###
52
+ #####################
53
  css = """
54
+ #container {
55
  margin: 0 auto;
56
+ max-width: 700px;
57
  }
58
  """
59
 
60
  with gr.Blocks(css=css) as demo:
61
+ gr.Markdown("# Code Retrieval using ModernBERT\n"
62
+ "Enter a natural language query and paste multiple Python code snippets, "
63
+ "delimited by `---`. We'll return the top 3 matches.")
64
 
65
+ with gr.Column(elem_id="container"):
66
  with gr.Row():
67
+ query_input = gr.Textbox(
68
+ label="Natural Language Query",
69
+ placeholder="What does your function do? e.g., 'Parse JSON from a string'"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  )
71
 
72
+ code_snippets_input = gr.Textbox(
73
+ label="Paste Python functions (delimited by ---)",
74
+ lines=10,
75
+ placeholder="Example:\n---\ndef parse_json(data):\n return json.loads(data)\n---\ndef add_numbers(a, b):\n return a + b\n---"
76
+ )
77
+
78
+ search_btn = gr.Button("Search", variant="primary")
79
+ results_output = gr.Markdown(label="Top 3 Matches")
80
+
81
+ # On click, run our retrieval function
82
+ search_btn.click(
83
+ fn=retrieve_top_snippets,
84
+ inputs=[query_input, code_snippets_input],
85
+ outputs=results_output
86
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  if __name__ == "__main__":
89
  demo.launch()