import random import math import matplotlib.pyplot as plt import matplotlib from smolagents import tool @tool def generate_normal_distribution(mean: float, std_dev: float, count: int = 10000)->list: """Generate a list of random numbers from a normal distribution. This function generates a list of random numbers drawn from a normal distribution specified by the mean and standard deviation. Args: mean: The mean (average) of the normal distribution. std_dev: The standard deviation of the normal distribution. count: The number of random samples to generate (default: 10000). Returns: list: A list of samples drawn from the specified normal distribution. """ samples = [] for _ in range(count // 2): # Generate pairs of samples u1 = random.random() u2 = random.random() # Box-Muller transform z0 = math.sqrt(-2.0 * math.log(u1)) * math.cos(2.0 * math.pi * u2) z1 = math.sqrt(-2.0 * math.log(u1)) * math.sin(2.0 * math.pi * u2) # Scale and shift to the specified mean and standard deviation samples.append(z0 * std_dev + mean) samples.append(z1 * std_dev + mean) return samples @tool def create_histogram_and_theorical_pdf(mean: float, std_dev:float, random_numbers:list)->str: """Generate a histogram of random numbers and overlay the theoretical probability density function (PDF) of a normal distribution. Return the histogram as a base64-encoded string. Args: mean: The mean (average) of the normal distribution. std_dev: The standard deviation of the normal distribution. random_numbers: A list of random numbers generated from a normal distribution. Returns: str: The graphics for the histogram and probability density function (PDF) on string format """ # Prepare data for plotting hist_data = [0] * 50 # Create a list to hold histogram data min_value = min(random_numbers) max_value = max(random_numbers) bin_width = (max_value - min_value) / len(hist_data) # Fill histogram data for number in random_numbers: bin_index = int((number - min_value) / bin_width) if bin_index >= len(hist_data): bin_index = len(hist_data) - 1 hist_data[bin_index] += 1 # Normalize histogram data hist_data = [count / len(random_numbers) / bin_width for count in hist_data] # Prepare x values for the theoretical PDF x_values = [min_value + i * bin_width for i in range(len(hist_data))] # Calculate the corresponding y values for the theoretical normal distribution pdf_values = [ (1 / (std_dev * math.sqrt(2 * math.pi))) * math.exp(-0.5 * ((x - mean) / std_dev) ** 2) \ for x in x_values ] # Scale for ASCII output max_hist = max(hist_data) if hist_data else 1 # Avoid division by zero max_pdf = max(pdf_values) if pdf_values else 1 # Avoid division by zero max_height = 20 # Maximum height of the ASCII histogram # Building the ASCII graph as a string ascii_graph = "Histogram (|: Counts, -: PDF)\n" for i in range(len(hist_data)): hist_count = int((hist_data[i] / max_hist) * max_height) pdf_count = int((pdf_values[i] / max_pdf) * max_height) ascii_graph += f"{'|' * hist_count} {'-' * pdf_count} {x_values[i]:.2f}\n" return ascii_graph