Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
result = client.predict(
|
8 |
-
text, # str in 'Enter multilingual text💬📝' Textbox component
|
9 |
-
voice, # filepath in 'Upload or Record Speaker Audio (optional)🌬️💬' Audio component
|
10 |
-
"", # str in 'alternatively, you can paste in an audio file URL:' Textbox component
|
11 |
-
14, # float (numeric value between 10 and 15) in 'Tempo (in characters per second)' Slider component
|
12 |
-
api_name="/whisper_speech_demo"
|
13 |
-
)
|
14 |
-
print(result)
|
15 |
-
return result
|
16 |
-
except Exception as e:
|
17 |
-
raise gr.Error(f"Error in get_speech: {str(e)}")
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
28 |
-
print(result)
|
29 |
-
return result['video']
|
30 |
-
except Exception as e:
|
31 |
-
raise gr.Error(f"Error in get_dreamtalk: {str(e)}")
|
32 |
|
33 |
def pipe(text, voice, image_in):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
raise gr.Error(f"An error occurred while processing: {str(e)}")
|
40 |
|
41 |
with gr.Blocks() as demo:
|
42 |
with gr.Column():
|
@@ -44,11 +29,9 @@ with gr.Blocks() as demo:
|
|
44 |
<h1 style="text-align: center;">
|
45 |
Talking Image
|
46 |
</h1>
|
47 |
-
<p style="text-align: center;"></p>
|
48 |
<h3 style="text-align: center;">
|
49 |
Clone your voice and make your photos speak.
|
50 |
</h3>
|
51 |
-
<p style="text-align: center;"></p>
|
52 |
""")
|
53 |
with gr.Row():
|
54 |
with gr.Column():
|
@@ -65,4 +48,4 @@ with gr.Blocks() as demo:
|
|
65 |
outputs=[video_o],
|
66 |
concurrency_limit=3
|
67 |
)
|
68 |
-
demo.queue(max_size=10).launch(show_error=True, show_api=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
|
6 |
+
# Load the model and processor
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("SpeechResearch/whisper-ft-normal")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("SpeechResearch/whisper-ft-normal")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def transcribe_speech(audio_path):
|
11 |
+
speech, _ = librosa.load(audio_path, sr=16000)
|
12 |
+
input_values = processor(speech, return_tensors="pt", padding="longest").input_values
|
13 |
+
with torch.no_grad():
|
14 |
+
logits = model(input_values).logits
|
15 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
16 |
+
transcription = processor.batch_decode(predicted_ids)
|
17 |
+
return transcription[0]
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def pipe(text, voice, image_in):
|
20 |
+
# Assuming voice is a file path to the audio file
|
21 |
+
transcription = transcribe_speech(voice)
|
22 |
+
# Now use this transcription with your get_dreamtalk function
|
23 |
+
video = get_dreamtalk(image_in, transcription)
|
24 |
+
return video
|
|
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
with gr.Column():
|
|
|
29 |
<h1 style="text-align: center;">
|
30 |
Talking Image
|
31 |
</h1>
|
|
|
32 |
<h3 style="text-align: center;">
|
33 |
Clone your voice and make your photos speak.
|
34 |
</h3>
|
|
|
35 |
""")
|
36 |
with gr.Row():
|
37 |
with gr.Column():
|
|
|
48 |
outputs=[video_o],
|
49 |
concurrency_limit=3
|
50 |
)
|
51 |
+
demo.queue(max_size=10).launch(show_error=True, show_api=False)
|