Spaces:
Sleeping
Sleeping
File size: 5,783 Bytes
45c901d 1ac0e91 45c901d ae465d3 45c901d ae465d3 cfaf8d8 ae465d3 cfaf8d8 ae465d3 cfaf8d8 ae465d3 cfaf8d8 ae465d3 cfaf8d8 ae465d3 45c901d cfaf8d8 1ac0e91 45c901d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from queue import SimpleQueue
from dotenv import load_dotenv
import re
from langchain.callbacks.base import BaseCallbackHandler
job_done = object() # signals the processing is done
class StreamingGradioCallbackHandler(BaseCallbackHandler):
"""Callback handler for streaming. Only works with LLMs that support streaming."""
def __init__(self, q):
self.q = q
def on_llm_start(self, serialized, prompts, **kwargs) -> None:
"""Run when LLM starts running."""
while not self.q.empty():
try:
self.q.get(block=False)
except SimpleQueue.empty:
continue
def on_llm_new_token(self, token, **kwargs) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.q.put(token)
def on_llm_end(self, response, **kwargs) -> None:
"""Run when LLM ends running."""
self.q.put(job_done)
def on_llm_error(self, error, **kwargs) -> None:
"""Run when LLM errors."""
self.q.put(job_done)
def add_gradio_streaming(llm):
q = SimpleQueue()
job_done = object() # signals the processing is done
llm.callbacks = [StreamingGradioCallbackHandler(q)]
return llm, q
def gradio_stream(llm, prompt):
thread = Thread(target=llm.predict, kwargs={"text": prompt})
thread.start()
text = ""
while True:
next_token = q.get(block=True) # Blocks until an input is available
if next_token is job_done:
break
text += next_token
time.sleep(0.03)
yield text
thread.join()
def get_source_link(metadata):
return metadata["file_url"] + f"#page={metadata['content_page_number'] + 1}"
def make_html_source(source, i, score, config):
meta = source.metadata
if meta["file_source_type"] == "AFP":
return f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_title']} - {meta['file_type']} AFP</h2>
<p>{source.page_content}</p>
</div>
<div class="card-footer">
<span>{meta['file_source_type']}</span>
<span>Relevance Score : {round(100*score,1)}%</span>
</div>
</div>
"""
if meta["file_source_type"] == "Presse":
if meta["file_url"] != "none":
return f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_title']} - {meta['file_publisher']}</h2>
<p>{source.page_content}</p>
</div>
<div class="card-footer">
<span>{meta['file_source_type']}</span>
<span>Relevance Score : {round(100*score,1)}%</span>
<a href={meta['file_url']} target="_blank">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
else:
return f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_title']} - {meta['file_publisher']}</h2>
<p>{source.page_content}</p>
</div>
<div class="card-footer">
<span>{meta['file_source_type']}</span>
<span>Relevance Score : {round(100*score,1)}%</span>
</div>
</div>
"""
if meta["file_url"]:
return f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_title']} - Page {meta['content_page_number'] + 1}</h2>
<p>{source.page_content.replace(config["passage_preprompt"], "")}</p>
</div>
<div class="card-footer">
<span>{meta['file_source_type']}</span>
<span>Relevance Score : {round(100*score,1)}%</span>
<a href="{get_source_link(meta)}" target="_blank">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
else:
return f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['file_title']} - Page {meta['content_page_number'] + 1}</h2>
<p>{source.page_content.replace(config["passage_preprompt"], "")}</p>
</div>
<div class="card-footer">
<span>{meta['file_source_type']}</span>
<span>Relevance Score : {round(100*score,1)}%</span>
</div>
</div>
"""
def parse_output_llm_with_sources(output):
content_parts = re.split(
r"[\[(]?(Doc\s?\d+(?:,\s?Doc\s?\d+)*|doc\s?\d+(?:,\s?doc\s?\d+)*|Doc\s\d+)[\])?]",
output,
)
parts = []
for part in content_parts:
if part.lower().startswith("doc"):
subparts = part.split(",")
subparts = [
subpart.lower().replace("doc", "").strip() for subpart in subparts
]
subparts = [
f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>"""
for subpart in subparts
]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def clear_text_box(textbox):
return ""
def add_text(chatbot, text):
chatbot = chatbot + [(text, None)]
return chatbot, text
def init_env():
try:
load_dotenv()
except:
pass
|