File size: 5,783 Bytes
45c901d
 
1ac0e91
45c901d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae465d3
45c901d
ae465d3
cfaf8d8
ae465d3
 
 
 
 
 
 
 
 
cfaf8d8
ae465d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfaf8d8
ae465d3
cfaf8d8
 
ae465d3
 
 
 
 
 
 
 
 
cfaf8d8
ae465d3
45c901d
cfaf8d8
1ac0e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c901d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from queue import SimpleQueue
from dotenv import load_dotenv
import re
from langchain.callbacks.base import BaseCallbackHandler

job_done = object()  # signals the processing is done


class StreamingGradioCallbackHandler(BaseCallbackHandler):
    """Callback handler for streaming. Only works with LLMs that support streaming."""

    def __init__(self, q):
        self.q = q

    def on_llm_start(self, serialized, prompts, **kwargs) -> None:
        """Run when LLM starts running."""
        while not self.q.empty():
            try:
                self.q.get(block=False)
            except SimpleQueue.empty:
                continue

    def on_llm_new_token(self, token, **kwargs) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        self.q.put(token)

    def on_llm_end(self, response, **kwargs) -> None:
        """Run when LLM ends running."""
        self.q.put(job_done)

    def on_llm_error(self, error, **kwargs) -> None:
        """Run when LLM errors."""
        self.q.put(job_done)


def add_gradio_streaming(llm):
    q = SimpleQueue()
    job_done = object()  # signals the processing is done
    llm.callbacks = [StreamingGradioCallbackHandler(q)]
    return llm, q


def gradio_stream(llm, prompt):
    thread = Thread(target=llm.predict, kwargs={"text": prompt})
    thread.start()
    text = ""
    while True:
        next_token = q.get(block=True)  # Blocks until an input is available
        if next_token is job_done:
            break
        text += next_token
        time.sleep(0.03)
        yield text
    thread.join()


def get_source_link(metadata):
    return metadata["file_url"] + f"#page={metadata['content_page_number'] + 1}"


def make_html_source(source, i, score, config):
    meta = source.metadata
    if meta["file_source_type"] == "AFP":
        return f"""
        <div class="card" id="doc{i}">
            <div class="card-content">
                <h2>Doc {i} - {meta['file_title']} - {meta['file_type']} AFP</h2>
                <p>{source.page_content}</p>
            </div>
            <div class="card-footer">
                <span>{meta['file_source_type']}</span>
                <span>Relevance Score : {round(100*score,1)}%</span>
            </div>
        </div>
        """

    if meta["file_source_type"] == "Presse":
        if meta["file_url"] != "none":
            return f"""
            <div class="card" id="doc{i}">
                <div class="card-content">
                    <h2>Doc {i} - {meta['file_title']} - {meta['file_publisher']}</h2>
                    <p>{source.page_content}</p>
                </div>
                <div class="card-footer">
                    <span>{meta['file_source_type']}</span>
                    <span>Relevance Score : {round(100*score,1)}%</span>
                    <a href={meta['file_url']} target="_blank">
                        <span role="img" aria-label="Open PDF">🔗</span>
                    </a>
                </div>
            </div>
            """
        else:
            return f"""
            <div class="card" id="doc{i}">
                <div class="card-content">
                    <h2>Doc {i} - {meta['file_title']} - {meta['file_publisher']}</h2>
                    <p>{source.page_content}</p>
                </div>
                <div class="card-footer">
                    <span>{meta['file_source_type']}</span>
                    <span>Relevance Score : {round(100*score,1)}%</span>
                </div>
            </div>
            """

    if meta["file_url"]:
        return f"""
        <div class="card" id="doc{i}">
            <div class="card-content">
                <h2>Doc {i} - {meta['file_title']} - Page {meta['content_page_number'] + 1}</h2>
                <p>{source.page_content.replace(config["passage_preprompt"], "")}</p>
            </div>
            <div class="card-footer">
                <span>{meta['file_source_type']}</span>
                <span>Relevance Score : {round(100*score,1)}%</span>
                <a href="{get_source_link(meta)}" target="_blank">
                    <span role="img" aria-label="Open PDF">🔗</span>
                </a>
            </div>
        </div>
        """
    else:
        return f"""
        <div class="card" id="doc{i}">
            <div class="card-content">
                <h2>Doc {i} - {meta['file_title']} - Page {meta['content_page_number'] + 1}</h2>
                <p>{source.page_content.replace(config["passage_preprompt"], "")}</p>
            </div>
            <div class="card-footer">
                <span>{meta['file_source_type']}</span>
                <span>Relevance Score : {round(100*score,1)}%</span>
            </div>
        </div>
        """


def parse_output_llm_with_sources(output):
    content_parts = re.split(
        r"[\[(]?(Doc\s?\d+(?:,\s?Doc\s?\d+)*|doc\s?\d+(?:,\s?doc\s?\d+)*|Doc\s\d+)[\])?]",
        output,
    )
    parts = []
    for part in content_parts:
        if part.lower().startswith("doc"):
            subparts = part.split(",")
            subparts = [
                subpart.lower().replace("doc", "").strip() for subpart in subparts
            ]
            subparts = [
                f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>"""
                for subpart in subparts
            ]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)

    return content_parts


def clear_text_box(textbox):
    return ""


def add_text(chatbot, text):
    chatbot = chatbot + [(text, None)]
    return chatbot, text


def init_env():
    try:
        load_dotenv()
    except:
        pass