from deepspeech import Model import gradio as gr import numpy as np import urllib.request import wave import subprocess import sys import shlex from shlex import quote model_file_path = "deepspeech-0.7.3-models.pbmm" lm_file_path = "deepspeech-0.7.3-models.scorer" url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.7.3/" urllib.request.urlretrieve(url + model_file_path, filename=model_file_path) urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path) beam_width = 100 lm_alpha = 0.93 lm_beta = 1.18 model = Model(model_file_path) model.enableExternalScorer(lm_file_path) model.setScorerAlphaBeta(lm_alpha, lm_beta) model.setBeamWidth(beam_width) def convert_samplerate(audio_path, desired_sample_rate): sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate {} --encoding signed-integer --endian little --compression 0.0 --no-dither - '.format(quote(audio_path), desired_sample_rate) try: output = subprocess.check_output(shlex.split(sox_cmd), stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: raise RuntimeError('SoX returned non-zero status: {}'.format(e.stderr)) except OSError as e: raise OSError(e.errno, 'SoX not found, use {}hz files or install it: {}'.format(desired_sample_rate, e.strerror)) return desired_sample_rate, np.frombuffer(output, np.int16) def transcribe(audio_file): desired_sample_rate = model.sampleRate() fin = wave.open(audio_file, 'rb') fs_orig = fin.getframerate() if fs_orig != desired_sample_rate: print('Warning: original sample rate ({}) is different than {}hz. Resampling might produce erratic speech recognition.'.format(fs_orig, desired_sample_rate), file=sys.stderr) fs_new, audio = convert_samplerate(audio_file, desired_sample_rate) else: audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) audio_length = fin.getnframes() * (1/fs_orig) fin.close() text = model.stt(audio) return text demo = gr.Interface( transcribe, # [gr.Audio(source="microphone", streaming=True), "state"], gr.Audio(label="Upload Audio File", source="upload", type="filepath", file_count="multiple"), outputs=gr.Textbox(label="Transcript") ) if __name__ == "__main__": demo.launch()