tts2jk / TTS /cs_api.py
juliankoe's picture
Upload folder using huggingface_hub
a9384d7
import http.client
import json
import os
import tempfile
import urllib.request
from typing import Tuple
import numpy as np
import requests
from scipy.io import wavfile
from TTS.utils.audio.numpy_transforms import save_wav
class Speaker(object):
"""Convert dict to object."""
def __init__(self, d, is_voice=False):
self.is_voice = is_voice
for k, v in d.items():
if isinstance(k, (list, tuple)):
setattr(self, k, [Speaker(x) if isinstance(x, dict) else x for x in v])
else:
setattr(self, k, Speaker(v) if isinstance(v, dict) else v)
def __repr__(self):
return str(self.__dict__)
class CS_API:
"""🐸Coqui Studio API Wrapper.
🐸Coqui Studio is the most advanced voice generation platform. You can generate new voices by voice cloning, voice
interpolation, or our unique prompt to voice technology. It also provides a set of built-in voices with different
characteristics. You can use these voices to generate new audio files or use them in your applications.
You can use all the built-in and your own 🐸Coqui Studio speakers with this API with an API token.
You can signup to 🐸Coqui Studio from https://app.coqui.ai/auth/signup and get an API token from
https://app.coqui.ai/account. We can either enter the token as an environment variable as
`export COQUI_STUDIO_TOKEN=<token>` or pass it as `CS_API(api_token=<toke>)`.
Visit https://app.coqui.ai/api for more information.
Args:
api_token (str): 🐸Coqui Studio API token. If not provided, it will be read from the environment variable
`COQUI_STUDIO_TOKEN`.
model (str): 🐸Coqui Studio model. It can be either `V1`, `XTTS`. Default is `XTTS`.
Example listing all available speakers:
>>> from TTS.api import CS_API
>>> tts = CS_API()
>>> tts.speakers
Example listing all emotions:
>>> # emotions are only available for `V1` model
>>> from TTS.api import CS_API
>>> tts = CS_API(model="V1")
>>> tts.emotions
Example with a built-in 🐸 speaker:
>>> from TTS.api import CS_API
>>> tts = CS_API()
>>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name)
>>> filepath = tts.tts_to_file(text="Hello world!", speaker_name=tts.speakers[0].name, file_path="output.wav")
Example with multi-language model:
>>> from TTS.api import CS_API
>>> tts = CS_API(model="XTTS")
>>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name, language="en")
"""
MODEL_ENDPOINTS = {
"V1": {
"list_speakers": "https://app.coqui.ai/api/v2/speakers",
"synthesize": "https://app.coqui.ai/api/v2/samples",
"list_voices": "https://app.coqui.ai/api/v2/voices",
},
"XTTS": {
"list_speakers": "https://app.coqui.ai/api/v2/speakers",
"synthesize": "https://app.coqui.ai/api/v2/samples/xtts/render/",
"list_voices": "https://app.coqui.ai/api/v2/voices/xtts",
},
}
SUPPORTED_LANGUAGES = ["en", "es", "de", "fr", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja"]
def __init__(self, api_token=None, model="XTTS"):
self.api_token = api_token
self.model = model
self.headers = None
self._speakers = None
self._check_token()
@staticmethod
def ping_api():
URL = "https://coqui.gateway.scarf.sh/tts/api"
_ = requests.get(URL)
@property
def speakers(self):
if self._speakers is None:
self._speakers = self.list_all_speakers()
return self._speakers
@property
def emotions(self):
"""Return a list of available emotions.
TODO: Get this from the API endpoint.
"""
if self.model == "V1":
return ["Neutral", "Happy", "Sad", "Angry", "Dull"]
else:
raise ValueError(f"❗ Emotions are not available for {self.model}.")
def _check_token(self):
if self.api_token is None:
self.api_token = os.environ.get("COQUI_STUDIO_TOKEN")
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_token}"}
if not self.api_token:
raise ValueError(
"No API token found for 🐸Coqui Studio voices - https://coqui.ai \n"
"Visit 🔗https://app.coqui.ai/account to get one.\n"
"Set it as an environment variable `export COQUI_STUDIO_TOKEN=<token>`\n"
""
)
def list_all_speakers(self):
"""Return both built-in Coqui Studio speakers and custom voices created by the user."""
return self.list_speakers() + self.list_voices()
def list_speakers(self):
"""List built-in Coqui Studio speakers."""
self._check_token()
conn = http.client.HTTPSConnection("app.coqui.ai")
url = self.MODEL_ENDPOINTS[self.model]["list_speakers"]
conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
res = conn.getresponse()
data = res.read()
return [Speaker(s) for s in json.loads(data)["result"]]
def list_voices(self):
"""List custom voices created by the user."""
conn = http.client.HTTPSConnection("app.coqui.ai")
url = self.MODEL_ENDPOINTS[self.model]["list_voices"]
conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
res = conn.getresponse()
data = res.read()
return [Speaker(s, True) for s in json.loads(data)["result"]]
def list_speakers_as_tts_models(self):
"""List speakers in ModelManager format."""
models = []
for speaker in self.speakers:
model = f"coqui_studio/multilingual/{speaker.name}/{self.model}"
models.append(model)
return models
def name_to_speaker(self, name):
for speaker in self.speakers:
if speaker.name == name:
return speaker
raise ValueError(f"Speaker {name} not found in {self.speakers}")
def id_to_speaker(self, speaker_id):
for speaker in self.speakers:
if speaker.id == speaker_id:
return speaker
raise ValueError(f"Speaker {speaker_id} not found.")
@staticmethod
def url_to_np(url):
tmp_file, _ = urllib.request.urlretrieve(url)
rate, data = wavfile.read(tmp_file)
return data, rate
@staticmethod
def _create_payload(model, text, speaker, speed, emotion, language):
payload = {}
# if speaker.is_voice:
payload["voice_id"] = speaker.id
# else:
payload["speaker_id"] = speaker.id
if model == "V1":
payload.update(
{
"emotion": emotion,
"name": speaker.name,
"text": text,
"speed": speed,
}
)
elif model == "XTTS":
payload.update(
{
"name": speaker.name,
"text": text,
"speed": speed,
"language": language,
}
)
else:
raise ValueError(f"❗ Unknown model {model}")
return payload
def _check_tts_args(self, text, speaker_name, speaker_id, emotion, speed, language):
assert text is not None, "❗ text is required for V1 model."
assert speaker_name is not None, "❗ speaker_name is required for V1 model."
if self.model == "V1":
if emotion is None:
emotion = "Neutral"
assert language is None, "❗ language is not supported for V1 model."
elif self.model == "XTTS":
assert emotion is None, f"❗ Emotions are not supported for XTTS model. Use V1 model."
assert language is not None, "❗ Language is required for XTTS model."
assert (
language in self.SUPPORTED_LANGUAGES
), f"❗ Language {language} is not yet supported. Check https://docs.coqui.ai/reference/samples_xtts_create."
return text, speaker_name, speaker_id, emotion, speed, language
def tts(
self,
text: str,
speaker_name: str = None,
speaker_id=None,
emotion=None,
speed=1.0,
language=None, # pylint: disable=unused-argument
) -> Tuple[np.ndarray, int]:
"""Synthesize speech from text.
Args:
text (str): Text to synthesize.
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
voices (user generated speakers) with `list_voices()`.
speaker_id (str): Speaker ID. If None, the speaker name is used.
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only
supported by `V1` model. Defaults to None.
speed (float): Speed of the speech. 1.0 is normal speed.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model. See https://docs.coqui.ai/reference/samples_xtts_create for supported languages.
"""
self._check_token()
self.ping_api()
if speaker_name is None and speaker_id is None:
raise ValueError(" [!] Please provide either a `speaker_name` or a `speaker_id`.")
if speaker_id is None:
speaker = self.name_to_speaker(speaker_name)
else:
speaker = self.id_to_speaker(speaker_id)
text, speaker_name, speaker_id, emotion, speed, language = self._check_tts_args(
text, speaker_name, speaker_id, emotion, speed, language
)
conn = http.client.HTTPSConnection("app.coqui.ai")
payload = self._create_payload(self.model, text, speaker, speed, emotion, language)
url = self.MODEL_ENDPOINTS[self.model]["synthesize"]
conn.request("POST", url, json.dumps(payload), self.headers)
res = conn.getresponse()
data = res.read()
try:
wav, sr = self.url_to_np(json.loads(data)["audio_url"])
except KeyError as e:
raise ValueError(f" [!] 🐸 API returned error: {data}") from e
return wav, sr
def tts_to_file(
self,
text: str,
speaker_name: str,
speaker_id=None,
emotion=None,
speed=1.0,
pipe_out=None,
language=None,
file_path: str = None,
) -> str:
"""Synthesize speech from text and save it to a file.
Args:
text (str): Text to synthesize.
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
voices (user generated speakers) with `list_voices()`.
speaker_id (str): Speaker ID. If None, the speaker name is used.
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
speed (float): Speed of the speech. 1.0 is normal speed.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en".
file_path (str): Path to save the file. If None, a temporary file is created.
"""
if file_path is None:
file_path = tempfile.mktemp(".wav")
wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
save_wav(wav=wav, path=file_path, sample_rate=sr, pipe_out=pipe_out)
return file_path
if __name__ == "__main__":
import time
api = CS_API()
print(api.speakers)
print(api.list_speakers_as_tts_models())
ts = time.time()
wav, sr = api.tts(
"It took me quite a long time to develop a voice.", language="en", speaker_name=api.speakers[0].name
)
print(f" [i] XTTS took {time.time() - ts:.2f}s")
filepath = api.tts_to_file(
text="Hello world!", speaker_name=api.speakers[0].name, language="en", file_path="output.wav"
)