|
import os |
|
|
|
from coqpit import Coqpit |
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.tts.configs.shared_configs import BaseAudioConfig |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.vocoder.configs.hifigan_config import * |
|
from TTS.vocoder.datasets.preprocess import load_wav_data |
|
from TTS.vocoder.models.gan import GAN |
|
|
|
output_path = "/storage/output-hifigan/" |
|
|
|
audio_config = BaseAudioConfig( |
|
mel_fmin=50, |
|
mel_fmax=8000, |
|
hop_length=256, |
|
stats_path="/storage/TTS/scale_stats.npy", |
|
) |
|
|
|
config = HifiganConfig( |
|
batch_size=74, |
|
eval_batch_size=16, |
|
num_loader_workers=8, |
|
num_eval_loader_workers=8, |
|
lr_disc=0.0002, |
|
lr_gen=0.0002, |
|
run_eval=True, |
|
test_delay_epochs=5, |
|
epochs=1000, |
|
use_noise_augment=True, |
|
seq_len=8192, |
|
pad_short=2000, |
|
save_step=5000, |
|
print_step=50, |
|
print_eval=True, |
|
mixed_precision=False, |
|
eval_split_size=30, |
|
save_n_checkpoints=2, |
|
save_best_after=5000, |
|
data_path="/storage/filtered_dataset", |
|
output_path=output_path, |
|
audio=audio_config, |
|
) |
|
|
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
print("config.eval_split_size = ", config.eval_split_size) |
|
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) |
|
|
|
|
|
model = GAN(config, ap) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples |
|
) |
|
trainer.fit() |
|
|