|
import unittest |
|
|
|
import torch as T |
|
|
|
from tests import get_tests_input_path |
|
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss |
|
from TTS.encoder.models.lstm import LSTMSpeakerEncoder |
|
from TTS.encoder.models.resnet import ResNetSpeakerEncoder |
|
|
|
file_path = get_tests_input_path() |
|
|
|
|
|
class LSTMSpeakerEncoderTests(unittest.TestCase): |
|
|
|
def test_in_out(self): |
|
dummy_input = T.rand(4, 80, 20) |
|
dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] |
|
model = LSTMSpeakerEncoder(input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3) |
|
|
|
output = model.forward(dummy_input) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 256 |
|
output = model.inference(dummy_input) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
output_norm = T.nn.functional.normalize(output, dim=1, p=2) |
|
assert_diff = (output_norm - output).sum().item() |
|
assert output.type() == "torch.FloatTensor" |
|
assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" |
|
|
|
dummy_input = T.rand(1, 80, 240) |
|
output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5) |
|
assert output.shape[0] == 1 |
|
assert output.shape[1] == 256 |
|
assert len(output.shape) == 2 |
|
|
|
|
|
class ResNetSpeakerEncoderTests(unittest.TestCase): |
|
|
|
def test_in_out(self): |
|
dummy_input = T.rand(4, 80, 20) |
|
dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] |
|
model = ResNetSpeakerEncoder(input_dim=80, proj_dim=256) |
|
|
|
output = model.forward(dummy_input) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 256 |
|
output = model.forward(dummy_input, l2_norm=True) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 256 |
|
|
|
|
|
output_norm = T.nn.functional.normalize(output, dim=1, p=2) |
|
assert_diff = (output_norm - output).sum().item() |
|
assert output.type() == "torch.FloatTensor" |
|
assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" |
|
|
|
dummy_input = T.rand(1, 80, 240) |
|
output = model.compute_embedding(dummy_input, num_frames=160, num_eval=10) |
|
assert output.shape[0] == 1 |
|
assert output.shape[1] == 256 |
|
assert len(output.shape) == 2 |
|
|
|
|
|
class GE2ELossTests(unittest.TestCase): |
|
|
|
def test_in_out(self): |
|
|
|
dummy_input = T.rand(4, 5, 64) |
|
loss = GE2ELoss(loss_method="softmax") |
|
output = loss.forward(dummy_input) |
|
assert output.item() >= 0.0 |
|
|
|
dummy_input = T.ones(4, 5, 64) |
|
loss = GE2ELoss(loss_method="softmax") |
|
output = loss.forward(dummy_input) |
|
assert output.item() >= 0.0 |
|
|
|
dummy_input = T.empty(3, 64) |
|
dummy_input = T.nn.init.orthogonal_(dummy_input) |
|
dummy_input = T.cat( |
|
[ |
|
dummy_input[0].repeat(5, 1, 1).transpose(0, 1), |
|
dummy_input[1].repeat(5, 1, 1).transpose(0, 1), |
|
dummy_input[2].repeat(5, 1, 1).transpose(0, 1), |
|
] |
|
) |
|
loss = GE2ELoss(loss_method="softmax") |
|
output = loss.forward(dummy_input) |
|
assert output.item() < 0.005 |
|
|
|
|
|
class AngleProtoLossTests(unittest.TestCase): |
|
|
|
def test_in_out(self): |
|
|
|
dummy_input = T.rand(4, 5, 64) |
|
loss = AngleProtoLoss() |
|
output = loss.forward(dummy_input) |
|
assert output.item() >= 0.0 |
|
|
|
|
|
dummy_input = T.ones(4, 5, 64) |
|
loss = AngleProtoLoss() |
|
output = loss.forward(dummy_input) |
|
assert output.item() >= 0.0 |
|
|
|
|
|
dummy_input = T.empty(3, 64) |
|
dummy_input = T.nn.init.orthogonal_(dummy_input) |
|
dummy_input = T.cat( |
|
[ |
|
dummy_input[0].repeat(5, 1, 1).transpose(0, 1), |
|
dummy_input[1].repeat(5, 1, 1).transpose(0, 1), |
|
dummy_input[2].repeat(5, 1, 1).transpose(0, 1), |
|
] |
|
) |
|
loss = AngleProtoLoss() |
|
output = loss.forward(dummy_input) |
|
assert output.item() < 0.005 |
|
|
|
|
|
class SoftmaxAngleProtoLossTests(unittest.TestCase): |
|
|
|
def test_in_out(self): |
|
embedding_dim = 64 |
|
num_speakers = 5 |
|
batch_size = 4 |
|
|
|
dummy_label = T.randint(low=0, high=num_speakers, size=(batch_size, num_speakers)) |
|
|
|
dummy_input = T.rand(batch_size, num_speakers, embedding_dim) |
|
loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) |
|
output = loss.forward(dummy_input, dummy_label) |
|
assert output.item() >= 0.0 |
|
|
|
|
|
dummy_input = T.ones(batch_size, num_speakers, embedding_dim) |
|
loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers) |
|
output = loss.forward(dummy_input, dummy_label) |
|
assert output.item() >= 0.0 |
|
|