Spaces:
Sleeping
Sleeping
fix warning error
Browse files- app.py +4 -5
- requirements.txt +1 -0
app.py
CHANGED
@@ -3,10 +3,9 @@ import streamlit as st
|
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
6 |
-
from
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
-
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
|
12 |
|
@@ -32,13 +31,14 @@ def split_text(text):
|
|
32 |
|
33 |
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
|
34 |
def create_knowledge_base(chunks):
|
35 |
-
|
|
|
36 |
return FAISS.from_texts(chunks, embeddings)
|
37 |
|
38 |
# Hugging Face ๋ชจ๋ธ ๋ก๋
|
39 |
def load_model():
|
40 |
model_name = "halyn/gemma2-2b-it-finetuned-paperqa"
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
43 |
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
|
44 |
|
@@ -49,7 +49,6 @@ def setup_qa_chain():
|
|
49 |
llm = HuggingFacePipeline(pipeline=pipe)
|
50 |
qa_chain = load_qa_chain(llm, chain_type="stuff")
|
51 |
|
52 |
-
|
53 |
# ๋ฉ์ธ ํ์ด์ง UI
|
54 |
def main_page():
|
55 |
st.title("Welcome to GemmaPaperQA")
|
|
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
|
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
|
11 |
|
|
|
31 |
|
32 |
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
|
33 |
def create_knowledge_base(chunks):
|
34 |
+
model_name = "halyn/gemma2-2b-it-finetuned-paperqa"
|
35 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
36 |
return FAISS.from_texts(chunks, embeddings)
|
37 |
|
38 |
# Hugging Face ๋ชจ๋ธ ๋ก๋
|
39 |
def load_model():
|
40 |
model_name = "halyn/gemma2-2b-it-finetuned-paperqa"
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, clean_up_tokenization_spaces=False)
|
42 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
43 |
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
|
44 |
|
|
|
49 |
llm = HuggingFacePipeline(pipeline=pipe)
|
50 |
qa_chain = load_qa_chain(llm, chain_type="stuff")
|
51 |
|
|
|
52 |
# ๋ฉ์ธ ํ์ด์ง UI
|
53 |
def main_page():
|
54 |
st.title("Welcome to GemmaPaperQA")
|
requirements.txt
CHANGED
@@ -11,3 +11,4 @@ requests==2.32.3
|
|
11 |
huggingface-hub==0.25.1
|
12 |
sentence-transformers==3.1.1
|
13 |
peft==0.2.0
|
|
|
|
11 |
huggingface-hub==0.25.1
|
12 |
sentence-transformers==3.1.1
|
13 |
peft==0.2.0
|
14 |
+
langchain-huggingface
|