Spaces:
Paused
Paused
upload code
Browse files- app.py +161 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.chains.question_answering import load_qa_chain
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_community.llms import HuggingFacePipeline
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
# Global variables
|
13 |
+
knowledge_base = None
|
14 |
+
qa_chain = None
|
15 |
+
|
16 |
+
# PDF ํ์ผ ๋ก๋ ๋ฐ ํ
์คํธ ์ถ์ถ
|
17 |
+
def load_pdf(pdf_file):
|
18 |
+
pdf_reader = PdfReader(pdf_file)
|
19 |
+
text = "".join(page.extract_text() for page in pdf_reader.pages)
|
20 |
+
return text
|
21 |
+
|
22 |
+
# ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ
|
23 |
+
def split_text(text):
|
24 |
+
text_splitter = CharacterTextSplitter(
|
25 |
+
separator="\n",
|
26 |
+
chunk_size=1000,
|
27 |
+
chunk_overlap=200,
|
28 |
+
length_function=len
|
29 |
+
)
|
30 |
+
return text_splitter.split_text(text)
|
31 |
+
|
32 |
+
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
|
33 |
+
def create_knowledge_base(chunks):
|
34 |
+
model_name = "sentence-transformers/all-mpnet-base-v2" # ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ช
์
|
35 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
36 |
+
return FAISS.from_texts(chunks, embeddings)
|
37 |
+
|
38 |
+
# Hugging Face ๋ชจ๋ธ ๋ก๋
|
39 |
+
def load_model():
|
40 |
+
model_name = "halyn/gemma2-2b-it-finetuned-paperqa" # ํ
์คํธ ์์ฑ ๋ชจ๋ธ ์ฌ์ฉ
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, clean_up_tokenization_spaces=False)
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
43 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
|
44 |
+
|
45 |
+
# QA ์ฒด์ธ ์ค์
|
46 |
+
def setup_qa_chain():
|
47 |
+
global qa_chain
|
48 |
+
try:
|
49 |
+
pipe = load_model()
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading model: {e}")
|
52 |
+
return
|
53 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
54 |
+
qa_chain = load_qa_chain(llm, chain_type="stuff")
|
55 |
+
|
56 |
+
# ๋ฉ์ธ ํ์ด์ง UI
|
57 |
+
def main_page():
|
58 |
+
st.title("Welcome to GemmaPaperQA")
|
59 |
+
st.subheader("Upload Your Paper")
|
60 |
+
|
61 |
+
paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
|
62 |
+
if paper:
|
63 |
+
st.write(f"Upload complete! File name: {paper.name}")
|
64 |
+
# ํ์ผ ํฌ๊ธฐ ํ์ธ
|
65 |
+
file_size = paper.size # ํ์ผ ํฌ๊ธฐ๋ฅผ ํ์ผ ํฌ์ธํฐ ์ด๋ ์์ด ํ์ธ
|
66 |
+
if file_size > 10 * 1024 * 1024: # 10MB ์ ํ
|
67 |
+
st.error("File is too large! Please upload a file smaller than 10MB.")
|
68 |
+
return
|
69 |
+
|
70 |
+
# ์ค๊ฐ ํ์ธ ์ ์ฐจ - PDF ๋ด์ฉ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
|
71 |
+
with st.spinner('Processing PDF...'):
|
72 |
+
try:
|
73 |
+
paper.seek(0) # ํ์ผ ์ฝ๊ธฐ ํฌ์ธํฐ๋ฅผ ์ฒ์์ผ๋ก ๋๋๋ฆผ
|
74 |
+
contents = paper.read()
|
75 |
+
pdf_file = io.BytesIO(contents)
|
76 |
+
text = load_pdf(pdf_file)
|
77 |
+
|
78 |
+
# ํ
์คํธ๊ฐ ์ถ์ถ๋์ง ์์ ๊ฒฝ์ฐ ์๋ฌ ์ฒ๋ฆฌ
|
79 |
+
if len(text.strip()) == 0:
|
80 |
+
st.error("The PDF appears to have no extractable text. Please check the file and try again.")
|
81 |
+
return
|
82 |
+
|
83 |
+
st.text_area("Preview of extracted text", text[:1000], height=200)
|
84 |
+
st.write(f"Total characters extracted: {len(text)}")
|
85 |
+
global knowledge_base
|
86 |
+
if st.button("Proceed with this file"):
|
87 |
+
chunks = split_text(text)
|
88 |
+
knowledge_base = create_knowledge_base(chunks)
|
89 |
+
|
90 |
+
if knowledge_base is None:
|
91 |
+
st.error("Failed to create knowledge base.")
|
92 |
+
return
|
93 |
+
|
94 |
+
setup_qa_chain()
|
95 |
+
|
96 |
+
st.session_state.paper_name = paper.name[:-4]
|
97 |
+
st.session_state.page = "chat"
|
98 |
+
st.success("PDF successfully processed! You can now ask questions.")
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
st.error(f"Failed to process the PDF: {str(e)}")
|
102 |
+
|
103 |
+
|
104 |
+
# ์ฑํ
ํ์ด์ง UI
|
105 |
+
def chat_page():
|
106 |
+
st.title(f"Ask anything about {st.session_state.paper_name}")
|
107 |
+
|
108 |
+
if "messages" not in st.session_state:
|
109 |
+
st.session_state.messages = []
|
110 |
+
|
111 |
+
for message in st.session_state.messages:
|
112 |
+
with st.chat_message(message["role"]):
|
113 |
+
st.markdown(message["content"])
|
114 |
+
|
115 |
+
if prompt := st.chat_input("Chat here!"):
|
116 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
117 |
+
|
118 |
+
with st.chat_message("user"):
|
119 |
+
st.markdown(prompt)
|
120 |
+
|
121 |
+
response = get_response_from_model(prompt)
|
122 |
+
|
123 |
+
with st.chat_message("assistant"):
|
124 |
+
st.markdown(response)
|
125 |
+
|
126 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
127 |
+
|
128 |
+
if st.button("Go back to main page"):
|
129 |
+
st.session_state.page = "main"
|
130 |
+
|
131 |
+
# ๋ชจ๋ธ ์๋ต ์ฒ๋ฆฌ
|
132 |
+
def get_response_from_model(prompt):
|
133 |
+
try:
|
134 |
+
global knowledge_base, qa_chain
|
135 |
+
if not knowledge_base:
|
136 |
+
return "No PDF has been uploaded yet."
|
137 |
+
if not qa_chain:
|
138 |
+
return "QA chain is not initialized."
|
139 |
+
|
140 |
+
docs = knowledge_base.similarity_search(prompt)
|
141 |
+
response = qa_chain.run(input_documents=docs, question=prompt)
|
142 |
+
|
143 |
+
if "Helpful Answer:" in response:
|
144 |
+
response = response.split("Helpful Answer:")[1].strip()
|
145 |
+
|
146 |
+
return response
|
147 |
+
except Exception as e:
|
148 |
+
return f"Error: {str(e)}"
|
149 |
+
|
150 |
+
# ํ์ด์ง ์ค์
|
151 |
+
if "page" not in st.session_state:
|
152 |
+
st.session_state.page = "main"
|
153 |
+
|
154 |
+
if "paper_name" not in st.session_state:
|
155 |
+
st.session_state.paper_name = ""
|
156 |
+
|
157 |
+
# ํ์ด์ง ๋ ๋๋ง
|
158 |
+
if st.session_state.page == "main":
|
159 |
+
main_page()
|
160 |
+
elif st.session_state.page == "chat":
|
161 |
+
chat_page()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
PyPDF2
|
3 |
+
langchain-huggingface
|
4 |
+
langchain==0.3.1
|
5 |
+
langchain-community==0.3.1
|
6 |
+
langchain-core==0.3.8
|
7 |
+
langchain-text-splitters==0.3.0
|
8 |
+
transformers==4.45.1
|
9 |
+
torch==2.4.1
|
10 |
+
faiss-cpu==1.8.0.post1
|
11 |
+
requests==2.32.3
|
12 |
+
huggingface-hub==0.25.1
|
13 |
+
sentence-transformers==3.1.1
|
14 |
+
peft==0.2.0
|