Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
def fields(raw_class): | |
return [ | |
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" | |
] | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
class Tasks(Enum): | |
arc = Task("arc_challenge", "acc_norm", "ARC") | |
hellaswag = Task("hellaswag", "acc_norm", "HellaSwag") | |
mmlu = Task("mmlu", "acc", "MMLU") | |
truthfulqa = Task("truthfulqa_mc", "mc2", "TruthfulQA") | |
# winogrande = Task("winogrande", "acc_norm", "Winogrande") | |
# gsm8k = Task("gsm8k", "acc_norm", "GSM8k") | |
# commongen_v2 = Task("commongen_v2", "acc_norm", "CommonGen V2") | |
# eqBench = Task("eq_bench", "acc_norm", "EQ Bench") | |
# instFollow = Task("inst_follow", "acc_norm", "InstFollow") | |
# harmlessness = Task("harmlessness", "acc_norm", "Harmlessness") | |
# helpfulness = Task("helpfulness", "acc_norm", "Helpfulness") | |
class Ranks(Enum): | |
daily = Task("daily", "daily", "Daily Rank") | |
quarterly = Task("quarterly", "quarterly", "Quarterly Rank") | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append( | |
[ | |
"model_type_symbol", | |
ColumnContent, | |
ColumnContent("T", "str", True, never_hidden=True), | |
] | |
) | |
auto_eval_column_dict.append( | |
[ | |
"model", | |
ColumnContent, | |
ColumnContent("Model", "markdown", True, never_hidden=True), | |
] | |
) | |
# Ranks | |
auto_eval_column_dict.append( | |
["daily", ColumnContent, ColumnContent("Daily Rank", "number", True)] | |
) | |
auto_eval_column_dict.append( | |
["quarterly", ColumnContent, ColumnContent("Quarterly Rank", "number", True)] | |
) | |
# Scores | |
auto_eval_column_dict.append( | |
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)] | |
) | |
for task in Tasks: | |
auto_eval_column_dict.append( | |
[task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)] | |
) | |
# Model information | |
auto_eval_column_dict.append( | |
["model_type", ColumnContent, ColumnContent("Type", "str", False)] | |
) | |
auto_eval_column_dict.append( | |
["architecture", ColumnContent, ColumnContent("Architecture", "str", False)] | |
) | |
auto_eval_column_dict.append( | |
["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)] | |
) | |
auto_eval_column_dict.append( | |
["precision", ColumnContent, ColumnContent("Precision", "str", False)] | |
) | |
auto_eval_column_dict.append( | |
["merged", ColumnContent, ColumnContent("Merged", "bool", False)] | |
) | |
auto_eval_column_dict.append( | |
["license", ColumnContent, ColumnContent("Hub License", "str", False)] | |
) | |
auto_eval_column_dict.append( | |
["params", ColumnContent, ColumnContent("#Params (B)", "number", False)] | |
) | |
auto_eval_column_dict.append( | |
["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)] | |
) | |
auto_eval_column_dict.append( | |
[ | |
"still_on_hub", | |
ColumnContent, | |
ColumnContent("Available on the hub", "bool", False), | |
] | |
) | |
auto_eval_column_dict.append( | |
["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)] | |
) | |
auto_eval_column_dict.append( | |
["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, False)] | |
) | |
# Dummy column for the search bar (hidden by the custom CSS) | |
auto_eval_column_dict.append( | |
[ | |
"dummy", | |
ColumnContent, | |
ColumnContent("model_name_for_query", "str", False, dummy=True), | |
] | |
) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
# Define the human baselines | |
human_baseline_row = { | |
AutoEvalColumn.model.name: "<p>Human performance</p>", | |
} | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="🟢") | |
# FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") | |
RL = ModelDetails(name="RL-tuned", symbol="🟦") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
# if "fine-tuned" in type or "🔶" in type: | |
# return ModelType.FT | |
if "pretrained" in type or "🟢" in type: | |
return ModelType.PT | |
if "RL-tuned" in type or "🟦" in type: | |
return ModelType.RL | |
if "instruction-tuned" in type or "⭕" in type: | |
return ModelType.IFT | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
# bfloat16 = ModelDetails("bfloat16") | |
# qt_8bit = ModelDetails("8bit") | |
# qt_4bit = ModelDetails("4bit") | |
# qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["8bit"]: | |
return Precision.qt_8bit | |
if precision in ["4bit"]: | |
return Precision.qt_4bit | |
if precision in ["GPTQ", "None"]: | |
return Precision.qt_GPTQ | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [ | |
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden | |
] | |
TYPES_LITE = [ | |
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden | |
] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"Unknown": pd.Interval(-1, 0, closed="right"), | |
"0~3B": pd.Interval(0, 3, closed="right"), | |
"3~7B": pd.Interval(3, 7.3, closed="right"), | |
"7~13B": pd.Interval(7.3, 13, closed="right"), | |
"13~35B": pd.Interval(13, 35, closed="right"), | |
"35~60B": pd.Interval(35, 60, closed="right"), | |
"60B+": pd.Interval(60, 10000, closed="right"), | |
} | |