ImageAlchemy / app.py
junkmind's picture
Update app.py
58cedd7
raw
history blame
2.96 kB
import os
import numpy as np
import gradio as gr
from glob import glob
from functools import partial
from dataclasses import dataclass
import torch
import torch.nn.functional as F
import torchvision.transforms as TF
from transformers import SegformerForSemanticSegmentation
@dataclass
class Configs:
NUM_CLASSES: int = 4 # including background.
CLASSES: tuple = ("Large bowel", "Small bowel", "Stomach")
IMAGE_SIZE: tuple[int, int] = (288, 288) # W, H
MEAN: tuple = (0.485, 0.456, 0.406)
STD: tuple = (0.229, 0.224, 0.225)
MODEL_PATH: str = os.path.join(os.getcwd(), "segformer_trained_weights")
def get_model(*, model_path, num_classes):
model = SegformerForSemanticSegmentation.from_pretrained(model_path, num_labels=num_classes, ignore_mismatched_sizes=True)
return model
@torch.inference_mode()
def predict(input_image, model=None, preprocess_fn=None, device="cpu"):
shape_H_W = input_image.size[::-1]
input_tensor = preprocess_fn(input_image)
input_tensor = input_tensor.unsqueeze(0).to(device)
# Generate predictions
outputs = model(pixel_values=input_tensor.to(device), return_dict=True)
predictions = F.interpolate(outputs["logits"], size=shape_H_W, mode="bilinear", align_corners=False)
preds_argmax = predictions.argmax(dim=1).cpu().squeeze().numpy()
seg_info = [(preds_argmax == idx, class_name) for idx, class_name in enumerate(Configs.CLASSES, 1)]
return (input_image, seg_info)
if __name__ == "__main__":
class2hexcolor = {"Stomach": "#007fff", "Small bowel": "#009A17", "Large bowel": "#FF0000"}
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = get_model(model_path=Configs.MODEL_PATH, num_classes=Configs.NUM_CLASSES)
model.to(DEVICE)
model.eval()
_ = model(torch.randn(1, 3, *Configs.IMAGE_SIZE[::-1], device=DEVICE))
preprocess = TF.Compose(
[
TF.Resize(size=Configs.IMAGE_SIZE[::-1]),
TF.ToTensor(),
TF.Normalize(Configs.MEAN, Configs.STD, inplace=True),
]
)
with gr.Blocks(title="ImageAlchemy") as demo:
gr.Markdown("""<h1><center>Unveil the hidden details of the gastrointestinal (GI) tract like never before with ImageAlchemy</center></h1>""")
with gr.Row():
img_input = gr.Image(type="pil", height=360, width=360, label="Input image")
img_output = gr.AnnotatedImage(label="Predictions", height=360, width=360, color_map=class2hexcolor)
section_btn = gr.Button("Generate Predictions")
section_btn.click(partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE), img_input, img_output)
images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
examples = [i for i in np.random.choice(images_dir, size=10, replace=False)]
gr.Examples(examples=examples, inputs=img_input, outputs=img_output)
demo.launch()