File size: 19,318 Bytes
e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 0c1b085 e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 d642cc1 c07ada2 e195352 d642cc1 d149e20 d642cc1 676984e d642cc1 3756015 d642cc1 f3caa5b c07ada2 f3caa5b c07ada2 f3caa5b c07ada2 f3caa5b c07ada2 f3caa5b 676984e e195352 3d4535a e195352 d4bcb75 e195352 3d4535a e195352 d4bcb75 e195352 e974ac1 e195352 c2b2f75 f02d175 c2b2f75 e195352 c07ada2 e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 3d4535a e195352 d4bcb75 e195352 3d4535a e195352 3d4535a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# import subprocess
# import re
# from typing import List, Tuple, Optional
# command = ["python", "setup.py", "build_ext", "--inplace"]
# result = subprocess.run(command, capture_output=True, text=True)
# print("Output:\n", result.stdout)
# print("Errors:\n", result.stderr)
# if result.returncode == 0:
# print("Command executed successfully.")
# else:
# print("Command failed with return code:", result.returncode)
import gc
import math
# import multiprocessing as mp
import torch.multiprocessing as mp
import os
from process_wrappers import clear_folder, draw_markers, sam_click_wrapper1, sam_stroke_process, tracking_objects_process
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import ffmpeg
import cv2
def clean():
return ({}, {}, {}), None, None, 0, None, None, None, 0
def show_res_by_slider(frame_per, click_stack):
image_path = '/tmp/output_frames'
output_combined_dir = '/tmp/output_combined'
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
if combined_frames:
output_masked_frame_path = combined_frames
else:
original_frames = sorted([os.path.join(image_path, img_name) for img_name in os.listdir(image_path)])
output_masked_frame_path = original_frames
total_frames_num = len(output_masked_frame_path)
if total_frames_num == 0:
print("No output results found")
return None, None
else:
frame_num = math.floor(total_frames_num * frame_per / 100)
if frame_per == 100:
frame_num = frame_num - 1
chosen_frame_path = output_masked_frame_path[frame_num]
print(f"{chosen_frame_path}")
chosen_frame_show = cv2.imread(chosen_frame_path)
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
points_dict, labels_dict, masks_dict = click_stack
if frame_num in points_dict and frame_num in labels_dict:
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
return chosen_frame_show, chosen_frame_show, frame_num
def increment_ann_obj_id(ann_obj_id):
ann_obj_id += 1
return ann_obj_id
def drawing_board_get_input_first_frame(input_first_frame):
return input_first_frame
def sam_stroke_wrapper(click_stack, checkpoint, drawing_board, last_draw, frame_num, ann_obj_id):
queue = mp.Queue()
p = mp.Process(target=sam_stroke_process, args=(queue, click_stack, checkpoint, drawing_board, last_draw, frame_num, ann_obj_id))
p.start()
error, result = queue.get()
p.join()
if error:
raise Exception(f"Error in sam_stroke_process: {error}")
return result
def tracking_objects_wrapper(click_stack, checkpoint, frame_num, input_video):
queue = mp.Queue()
p = mp.Process(target=tracking_objects_process, args=(queue, click_stack, checkpoint, frame_num, input_video))
p.start()
error, result = queue.get()
p.join()
if error:
raise Exception(f"Error in sam_stroke_process: {error}")
return result
def seg_track_app():
import gradio as gr
def sam_click_wrapper(checkpoint, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData):
return sam_click_wrapper1(checkpoint, frame_num, point_mode, click_stack, ann_obj_id, [evt.index[0], evt.index[1]])
def change_video(input_video):
import gradio as gr
if input_video is None:
return 0, 0
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
scale_slider = gr.Slider.update(minimum=1.0,
maximum=fps,
step=1.0,
value=fps,)
frame_per = gr.Slider.update(minimum= 0.0,
maximum= total_frames / fps,
step=1.0/fps,
value=0.0,)
return scale_slider, frame_per
def get_meta_from_video(input_video, scale_slider):
import gradio as gr
output_dir = '/tmp/output_frames'
output_masks_dir = '/tmp/output_masks'
output_combined_dir = '/tmp/`output_combined`'
clear_folder(output_dir)
clear_folder(output_masks_dir)
clear_folder(output_combined_dir)
if input_video is None:
return ({}, {}, {}), None, None, 0, None, None, None, 0
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
frame_interval = max(1, int(fps // scale_slider))
print(f"frame_interval: {frame_interval}")
try:
ffmpeg.input(input_video, hwaccel='cuda').output(
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
).run()
except:
print(f"ffmpeg cuda err")
ffmpeg.input(input_video).output(
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
).run()
first_frame_path = os.path.join(output_dir, '0000000.jpg')
first_frame = cv2.imread(first_frame_path)
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
frame_per = gr.Slider.update(minimum= 0.0,
maximum= total_frames / fps,
step=frame_interval / fps,
value=0.0,)
return ({}, {}, {}), first_frame_rgb, first_frame_rgb, frame_per, None, None, None, 0
##########################################################
###################### Front-end ########################
##########################################################
css = """
#input_output_video video {
max-height: 550px;
max-width: 100%;
height: auto;
}
"""
app = gr.Blocks(css=css)
with app:
gr.Markdown(
'''
<div style="text-align:center; margin-bottom:20px;">
<span style="font-size:3em; font-weight:bold;">MedSAM2 for Video Segmentation 🔥</span>
</div>
<div style="text-align:center; margin-bottom:10px;">
<span style="font-size:1.5em; font-weight:bold;">MedSAM2-Segment Anything in Medical Images and Videos: Benchmark and Deployment</span>
</div>
<div style="text-align:center; margin-bottom:20px;">
<a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://arxiv.org/abs/2408.03322">
<img src="https://img.shields.io/badge/arXiv-2408.03322-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://github.com/bowang-lab/MedSAMSlicer/tree/SAM2">
<img src="https://img.shields.io/badge/3D-Slicer-Plugin" alt="3D Slicer Plugin" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://drive.google.com/drive/folders/1EXzRkxZmrXbahCFA8_ImFRM6wQDEpOSe?usp=sharing">
<img src="https://img.shields.io/badge/Video-Tutorial-green?style=plastic" alt="Video Tutorial" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2?tab=readme-ov-file#fine-tune-sam2-on-the-abdomen-ct-dataset">
<img src="https://img.shields.io/badge/Fine--tune-SAM2-blue" alt="Fine-tune SAM2" style="display:inline-block; margin-right:10px;">
</a>
</div>
<div style="text-align:left; margin-bottom:20px;">
This API supports using box (generated by scribble) and point prompts for video segmentation with
<a href="https://ai.meta.com/sam2/" target="_blank">SAM2</a>. Welcome to join our <a href="https://forms.gle/hk4Efp6uWnhjUHFP6" target="_blank">mailing list</a> to get updates or send feedback.
</div>
<div style="margin-bottom:20px;">
<ol style="list-style:none; padding-left:0;">
<li>1. Upload video file</li>
<li>2. Select model size and downsample frame rate and run <b>Preprocess</b></li>
<li>3. Use <b>Stroke to Box Prompt</b> to draw box on the first frame or <b>Point Prompt</b> to click on the first frame.</li>
<li> Note: The bounding rectangle of the stroke should be able to cover the segmentation target.</li>
<li>4. Click <b>Segment</b> to get the segmentation result</li>
<li>5. Click <b>Add New Object</b> to add new object</li>
<li>6. Click <b>Start Tracking</b> to track objects in the video</li>
<li>7. Click <b>Reset</b> to reset the app</li>
<li>8. Download the video with segmentation results</li>
</ol>
</div>
<div style="text-align:left; line-height:1.8;">
We designed this API and <a href="https://github.com/bowang-lab/MedSAMSlicer/tree/SAM2" target="_blank">3D Slicer Plugin</a> for medical image and video segmentation where the checkpoints are based on the original SAM2 models (<a href="https://github.com/facebookresearch/segment-anything-2" target="_blank">https://github.com/facebookresearch/segment-anything-2</a>). The image segmentation fine-tune code has been released on <a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2?tab=readme-ov-file#fine-tune-sam2-on-the-abdomen-ct-dataset" target="_blank">GitHub</a>. The video fine-tuning code is under active development and will be released as well.
</div>
<div style="text-align:left; line-height:1.8;">
If you find these tools useful, please consider citing the following papers:
</div>
<div style="text-align:left; line-height:1.8;">
Ravi, N., Gabeur, V., Hu, Y.T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K.V., Carion, N., Wu, C.Y., Girshick, R., Dollár, P., Feichtenhofer, C.: SAM 2: Segment Anything in Images and Videos. arXiv:2408.00714 (2024)
</div>
<div style="text-align:left; line-height:1.8;">
Ma, J., Kim, S., Li, F., Baharoon, M., Asakereh, R., Lyu, H., Wang, B.: Segment Anything in Medical Images and Videos: Benchmark and Deployment. arXiv preprint arXiv:2408.03322 (2024)
</div>
<div style="text-align:left; line-height:1.8;">
Other useful resources:
<a href="https://ai.meta.com/sam2" target="_blank">Official demo</a> from MetaAI,
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y" target="_blank">Video tutorial</a> from Piotr Skalski.
</div>
'''
)
click_stack = gr.State(({}, {}, {}))
frame_num = gr.State(value=(int(0)))
ann_obj_id = gr.State(value=(int(0)))
last_draw = gr.State(None)
with gr.Row():
with gr.Column(scale=0.5):
with gr.Row():
tab_video_input = gr.Tab(label="Video input")
with tab_video_input:
input_video = gr.Video(label='Input video', elem_id="input_output_video")
with gr.Row():
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
scale_slider = gr.Slider(
label="Downsampe Frame Rate (fps)",
minimum=0.0,
maximum=1.0,
step=0.25,
value=1.0,
interactive=True
)
preprocess_button = gr.Button(
value="Preprocess",
interactive=True,
)
with gr.Row():
tab_stroke = gr.Tab(label="Stroke to Box Prompt")
with tab_stroke:
drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True)
with gr.Row():
seg_acc_stroke = gr.Button(value="Segment", interactive=True)
tab_click = gr.Tab(label="Point Prompt")
with tab_click:
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True, height=550)
with gr.Row():
point_mode = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True)
with gr.Row():
with gr.Column():
frame_per = gr.Slider(
label = "Time (seconds)",
minimum= 0.0,
maximum= 100.0,
step=0.01,
value=0.0,
)
new_object_button = gr.Button(
value="Add New Object",
interactive=True
)
track_for_video = gr.Button(
value="Start Tracking",
interactive=True,
)
reset_button = gr.Button(
value="Reset",
interactive=True,
)
with gr.Column(scale=0.5):
output_video = gr.Video(label='Visualize Results', elem_id="input_output_video")
output_mp4 = gr.File(label="Predicted video")
output_mask = gr.File(label="Predicted masks")
with gr.Tab(label='Video examples'):
gr.Examples(
label="",
examples=[
"assets/12fps_Dancing_cells_trimmed.mp4",
"assets/clip_012251_fps5_07_25.mp4",
"assets/FLARE22_Tr_0004.mp4",
"assets/c_elegans_mov_cut_fps12.mp4",
],
inputs=[input_video],
)
gr.Examples(
label="",
examples=[
"assets/12fps_volvox_microcystis_play_trimmed.mp4",
"assets/12fps_macrophages_phagocytosis.mp4",
"assets/12fps_worm_eats_organism_5.mp4",
"assets/12fps_worm_eats_organism_6.mp4",
"assets/12fps_02_cups.mp4",
],
inputs=[input_video],
)
gr.Markdown(
'''
<div style="text-align:center; margin-top: 20px;">
The authors of this work highly appreciate Meta AI for making SAM2 publicly available to the community.
The interface was built on <a href="https://github.com/z-x-yang/Segment-and-Track-Anything/blob/main/tutorial/tutorial%20for%20WebUI-1.0-Version.md" target="_blank">SegTracker</a>, which is also an amazing tool for video segmentation tracking.
<a href="https://docs.google.com/document/d/1idDBV0faOjdjVs-iAHr0uSrw_9_ZzLGrUI2FEdK-lso/edit?usp=sharing" target="_blank">Data source</a>
</div>
'''
)
##########################################################
###################### back-end #########################
##########################################################
# listen to the preprocess button click to get the first frame of video with scaling
preprocess_button.click(
fn=get_meta_from_video,
inputs=[
input_video,
scale_slider,
],
outputs=[
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
]
)
frame_per.release(
fn= show_res_by_slider,
inputs=[
frame_per, click_stack
],
outputs=[
input_first_frame, drawing_board, frame_num
]
)
# Interactively modify the mask acc click
input_first_frame.select(
fn=sam_click_wrapper,
inputs=[
checkpoint, frame_num, point_mode, click_stack, ann_obj_id
],
outputs=[
input_first_frame, drawing_board, click_stack
]
)
# Track object in video
track_for_video.click(
fn=tracking_objects_wrapper,
inputs=[
click_stack,
checkpoint,
frame_num,
input_video,
],
outputs=[
input_first_frame,
drawing_board,
output_video,
output_mp4,
output_mask
]
)
reset_button.click(
fn=clean,
inputs=[],
outputs=[
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
]
)
new_object_button.click(
fn=increment_ann_obj_id,
inputs=[
ann_obj_id
],
outputs=[
ann_obj_id
]
)
tab_stroke.select(
fn=drawing_board_get_input_first_frame,
inputs=[input_first_frame,],
outputs=[drawing_board,],
)
seg_acc_stroke.click(
fn=sam_stroke_wrapper,
inputs=[
click_stack, checkpoint, drawing_board, last_draw, frame_num, ann_obj_id
],
outputs=[
click_stack, input_first_frame, drawing_board, last_draw
]
)
input_video.change(
fn=change_video,
inputs=[input_video],
outputs=[scale_slider, frame_per]
)
app.queue(concurrency_count=1)
app.launch(debug=True, share=False)
if __name__ == "__main__":
mp.set_start_method('spawn', force=True)
seg_track_app()
|